Ультразвуковой контроль оси колёсной пары электровоза ВЛ-10

Автор работы: Пользователь скрыл имя, 27 Марта 2015 в 04:35, курсовая работа

Краткое описание

Унифицированные колёсные пары с зубчатым колесом на удлиненной ступице устанавливаются на электровозы ВЛ60к, ВЛ80, ВЛ80к, а так же ВЛ10 и ВЛ11. Они состоят из оси, на которую с усилием 110-150 тс напрессованы колёсный центр с бандажом и зубчатым колесом. Колёсные пары должны удовлетворять требованиям ГОСТ 11018-64.

Содержание

1 Описание контролируемой детали
2 Сущность метода контроля УЗК
2.1 Физические основы
2.2 Пьезоэффект и пъезоэлектрические преобразователи
3 Методика работы
4 Обоснование метода
Список используемых источников

Прикрепленные файлы: 1 файл

Документ Microsoft Office Word (4).docx

— 123.44 Кб (Скачать документ)

Реферат: Ультразвуковой контроль оси колёсной пары электровоза ВЛ-10

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

Уральский государственный университет путей сообщения

Кафедра «ТКМ и химии»

 

Ультразвуковой контроль оси колёсной пары электровоза ВЛ-10

 

Проверил

преподаватель

Ригмант М.Г. Выполнил

студент группы 2003 - Т - 1062

Шумаков Г.В.

 

Екатеринбург

2008

Содержание

 

1 Описание контролируемой  детали

2 Сущность метода контроля  УЗК

2.1 Физические основы

2.2 Пьезоэффект и пъезоэлектрические преобразователи

3 Методика работы

4 Обоснование метода

Список используемых источников

1 Описание контролируемой  детали

 

Унифицированные колёсные пары с зубчатым колесом на удлиненной ступице устанавливаются на электровозы ВЛ60к, ВЛ80, ВЛ80к, а так же ВЛ10 и ВЛ11. Они состоят из оси, на которую с усилием 110-150 тс напрессованы колёсный центр с бандажом и зубчатым колесом. Колёсные пары должны удовлетворять требованиям ГОСТ 11018-64.

Оси изготовляют из осевой локомотивной стали Ос. Л ГОСТ 4728-72. Откованные заготовки осей нормализуют с последующим отпуском. Ось должна удовлетворять требованиям ГОСТ 3281-59. Допуск диаметра подступичной части оси подбирают по фактическим размерам сопрягаемых поверхностей колеса и оси, обеспечивающим условия запрессовки.

 

Рисунок 1 – Унифицированная колёсная пара электровозов ВЛ60к, ВЛ80, ВЛ80к, а так же ВЛ10 и ВЛ11.

2 Сущность метода контроля  УЗК

 

2.1Физические основы

 

Акустические методы контроля основаны на свойствах упругих механических колебаний, которые могут быть возбуждены в различных физических средах: твёрдых, жидких и газообразных. Упругие колебания представляют собой колебания частиц среды относительно своего положения равновесия, которые могут передаваться от одних частиц к другим т.е. такие колебания сопровождаются распространением энергии. Распространение энергии при упругих колебаниях происходит в виде волн за счёт упругих межмолекулярных связей.

В зависимости от частоты механических колебаний различают звук (механические колебания с диапазоном частот от 16 Гц до 20 кГц, воспринимающиеся человеческим ухом), ультразвук (механические колебания с частотой свыше 20 кГц) и инфразвук (механические колебания с частотой ниже 16 Гц). При контроле акустическими методами неразрушающего контроля используется, как правило, ультразвук. Упругие волны, распространяемые в среде источником ультразвука, в зависимости от своих свойств подразделяются на продольные, поперечные и поверхностные, причём поперечные и поверхностные волны могут распространяться только в твёрдых телах. Поверхностные волны могут распространяться в твёрдых телах только в поверхностном слое, глубина которого не превышает длину волны (λ). Акустические параметры некоторых материалов приведены в таблице 1.

Длина волны равна пути, пробегаемому волной за время полного цикла колебаний. Это время называется периодом колебаний (Т ). Число периодов колебаний в секунду называется частотой колебаний (f). Частота колебаний с периодом колебаний связаны простой зависимостью:

f=  (1)

 

Длина волны выражается зависимостью

 

λ = с∙Т, (2)

 

где с - скорость распространения волны в данной среде.

Учитывая формулы (1) и (2) длину волны можно выразить через частоту:

 

λ= . (3)

 

Эти соотношения справедливы для всех типов волн.

Величина энергии, проходящая в единицу времени через площадь 1 м2, расположенную перпендикулярно к направлению движения волны, называется интенсивностью волны I Вт/м (силой звука). Но поскольку на практике интенсивности звуковых волн изменяются в больших пределах, то для удобства их сравнения применяются относительные логарифмические единицы -децибелы (дБ). Уровень силы звука в децибелах будет:

 

N = 10∙lg  (4)

 

где I0 - некоторое пороговое значение интенсивности звуковой волны.

Важными характеристиками для ультразвукового контроля являются значения амплитуд колебаний (А) и звукового давления (Р):

 

Р = р∙с∙ώ∙А, (5)

где р - плотность среды;

с - скорость распространения волны;

ώ = 2∙π∙f - круговая частота колебаний.

Волновое сопротивление среды Z (Z = р∙с) имеет большое значение при переходе ультразвуковой волны через границу раздела сред.

При прохождении ультразвуковой (УЗ) волны через границу раздела двух сред одна часть энергии волны проходит через границу, а другая отражается от неё. В этом случае интенсивность отражённой волны (Iотр) будет пропорциональна интенсивности падающей волны (Iпад) и коэффициенту отражения R:

 

Iотр = R∙Iпад. (6)

 

Коэффициент отражения в свою очередь равен разности волновых сопротивлений граничащих сред:

 

R = Z1 -Z2 (7)

 

При R=0 будет наблюдаться полное прохождение ультразвука через границу раздела сред. Чем больше различие волновых сопротивлений сред, тем большая часть энергии отразится от границы раздела сред.

На этом физическом явлении основаны все контактные методы ультразвуковой дефектоскопии. Т.к. при наличии дефекта (несплошности) всегда имеется граница раздела между материалами несплошности и изделия c R ≠ 0 (сталь - шлак, сталь - воздух и т.п.), то в результате на ней будет происходить отражение Уз волны и частичное прохождение её через границу раздела. Поэтому дефекты могут быть обнаружены путём регистрации отражённых или прошедших УЗ волн.

Основными контактными методами являются теневой, зеркально-теневой и эхо-импульсный методы.

Важное значение в ультразвуковой дефектоскопии имеет угол падения волны на границу двух сред, т.к. он влияет на образование продольных, поперечных и поверхностных волн. Например, если ввести продольную ультразвуковую волну в металл через призму из оргстекла с углом менее 7°, то в метши введётся только продольная волна, от 28 до 55° - только поперечная, более 55° - только поверхностная волна. В связи с вышесказанным необходимо обратить внимание на то, что при прозвучивании оси колёсной пары вагона с торца продольной волной, последняя падает на цилиндрическую поверхность оси в её средней части под углом, близким к 90°, и трансформируясь в поперечную, отражается от неё под углом в 33°. Эти явления необходимо учитывать для получения достоверных результатов контроля.

 

2.2 Пьезоэффект и пьезоэлектрические преобразователи

 

Ультразвуковая дефектоскопия как средство обнаружения дефектов в изделиях базируется на свойствах ультразвука - проникновении в различные среды и отражении ультразвуковых волн от границы раздела сред.

В определённых условиях ультразвуковые колебания могут излучать некоторые природные и искусственные вещества, обладающие пьезоэлектрическими свойствами. К ним относятся кристаллические вещества: кварц, турмалин, сегнетова соль, сульфат лития; керамические вещества: титанат бария (ТБК-3), цирконат титанат свинца (ЦТС-19, ЦТСНВ-1, ЦТС-23). Сущность пьезо-эффекта состоит в том, что сжатие пластины из пьезоматериала приводит к появлению на её поверхностях электрических зарядов. Это явление называется прямым пьезоэффектом. Если же пластину поместить в переменное электрическое поле, то её толщина будет колебаться с частотой изменения поля. Такой пьезоэффект называется обратным. Эти явления позволяют преобразовывать электрические сигналы в ультразвуковые колебания и обратно. Наибольший эффект пьезопреобразования достигается при равенстве собственной частоты пьезопластины и частоты приложенного электрического поля (резонансе), который достигается при соотношении:

 

d= , (8)

 

где λп - длина волны в пьезопластине.

Пьезоэлектрический преобразователь (ПЭП) предназначен для ввода ультразвуковых колебаний в контролируемую деталь, а также для приёма отражённых от границы раздела УЗ волн и преобразования их в электрические сигналы для последующей обработки электронными блоками дефектоскопа.

Пьезоэлектрический преобразователь представленный на рисунке 1 состоит из корпуса, в который установлена пьезоэлектрическая пластина, наклеенная на протектор из оргстекла (для наклонных преобразователей на призму из оргстекла), питающих проводов, электроразъёма и демпфера.

 

Рисунок 1 - Конструкция пьезоэлектрических преобразователей:

а- прямой; б- наклонный; в- раздельно-совмещённый

 

Пьезопластина покрыта с двух сторон токопроводящими слоями металла (например, серебра), которые являются электродами. Т.к. при колебании пластины колебания Распространяются в обе стороны, то пространство с обратной стороны пластины заполняется демпфирующим материалом, который гасит эти колебания и, следовательно, исключает возможность фиксирования их дефектоскопом.

ПЭП работает следующим образом. Пьезопластина колеблется с частотой подведённого к её электродам напряжения. Если подачу напряжения прекратить, то пластина ещё некоторое время будет совершать свободные колебания и отдавать энергию этих колебаний в контактирующую с ней среду, но их амплитуда будет быстро затухать. Таким образом, формируется короткий ультразвуковой зондирующий импульс. Пьезопластина возбуждает в призме исключительно продольную волну.

ПЭП бывают различных видов:

В зависимости угла ввода УЗ волн

Прямые, когда у.з. колебания вводят в контролируемую деталь под углом 0° к вертикали (позволяют вводить только продольные волны);

наклонные - вводят УЗ колебания под углом, заданным конструкцией ПЭП.

В зависимости от конструктивного исполнения ПЭП могут быть:

раздельными, когда они выполняют функцию приёмника или излучателя УЗ колебаний;

совмещёнными, когда выполняют функцию приёмника и излучателя УЗ колебаний;

раздельно-совмещенными, когда два раздельных преобразователя смонтированны в общем корпусе и разделены акустическим экраном.

Кроме того, существуют специализированные преобразователи, изготовленные для контроля конкретного типа деталей. Например, ПЭП для контроля осей колёсных пар с торца оси (РУ-1Ш) или с зарезьбовой канавки (РУ-1). Корпус этого преобразователя повторяет собой форму оси в месте его установки. Внутри этого ПЭП смонтированы два совмещённых ПЭП (один прямой и один наклонный), а также схема их коммутации.

Оператор-дефектоскопист должен хорошо знать параметры и свойства преобразователей, применяющихся для контроля. Эти знания помогают правильно оценить значения сигналов, возникающих на электронно-лучевой трубке дефектоскопа. От этого зависит достоверность ультразвукового контроля. Характеристики ПЭП нормируются по ГОСТ 23702-79.

3 Методика работы

 

3.1 Общие положения

 

3.1.1 Ультразвуковому контролю подвергаются  оси локомотивных колёсных пар  при заводском и деповском  ремонте.

 

3.1.2 Выполнение ультразвукового  контроля по данной технологии  обеспечивает выявление в осях  усталостных трещин и внутренних  несплошностей, являющихся браком завода-изготовителя, эквивалентных или большим по своим отражающим свойствам искусственным отражателям в КО оси, используемым для настройки чувствительности, а так же позволяет оценить структуру металла осей.

 

3.1.3 Контроль осей производится  ультразвуковым дефектоскопом УД2-12, имеющим в комплекте прямой  П111-2,5-К12-002 и наклонные П121-2,5-40-002, П121-2,5-18 преобразователи.

 

3.1.4 Для проверки работоспособности, а так же настройки чувствительности дефектоскопа необходимо изготовить контрольный образец (КО) оси электровоза. КО изготавливается по эскизу, приведённому на рисунке 2

 

3.1.5 Технология контроля включает  в себя следующие этапы:

– подготовка к контролю;

– проведение контроля;

– оценка качества проконтролированной детали.

 

3.2 Подготовка к контролю

 

Подготовка к контролю включает:

– подготовку аппаратуру к работе;

– подготовку оси.

 

3.2.1 Подготовка аппаратуры к  работе

Подготовка аппаратуры к работе включает:

– подготовку дефектоскопа к работе;

– настройку масштаба развёртки;

– настройку чувствительности дефектоскопа.

Подготовка дефектоскопа к работе

Установить органы управления дефектоскопа в исходные положения в исходные положения в соответствии с картой, представленной в виде таблицы 1.

 

Таблица 2 - Технологическая карта процесса ультразвукового контроля болтов крепления полюсов ТЭД

Контроль неразрушающий

Ультразвуковой метод

На листах

4

Предприятие ТЧ-5

Тип Колёсная пара Электровоза ВЛ-10

лист №

1


УТВЕРЖДАЮ:

Главный инженер

__________________________

дата ___________

Изделие: Ось.

Дефектоскоп УД2-12 №123456.

Преобразователи ультразвуковые

П111-2,5-К12-002,

П121-2,5-40-002,

П121-2,5-18

Контролируемый объект

Объем

контроля

Поверхность

сканирования

Браковочная чувствительность

Зона контроля,

положение эхо-сигнала

НД на контроль инструкции Цтэр-13/3

Болт крепления полюсов.

цилиндрическая часть

Торец головки болта.

   

Контроль проводится электронным блоком и преобразователями, для которых зафиксированы значения браковочных режимов чувствительности


 

1 ПОДГОТОВКА ДЕФЕКТОСКОПА К  РАБОТЕ

№ п/п

Операция

Орган управления или коммутации, его установка.

Место нахождение органа управления

1

2

3

4

1.1

Заземлить корпус

дефектоскопа

Клемма І^І защитного заземления

Задняя панель

1.2

Проверить наличие и соответствие предохранителей номиналу.

Предохранители 1А и 0,5А или 2А (в зависимости от напряжения сети )

Задняя панель

1.3

Подключить кабель питания к сети

Кабель питания.

Задняя панель

1.4

Установить режим внутренней синхронизации

Нажать кнопку “ВНЕШ/ВНУТР”

Задняя панель.

1

2

3

4

1.5

Установить частоту следования зондирующих импульсов .

Нажать кнопку “x2”, установить кнопку “125 Hz/500 Hz” в отпущенное положение

Задняя панель

1.6

Установить органы управления дефектоскопа в следующие положения

Все независимые кнопки на верхней панели дефектоскопа в отпущенное положение кроме кнопки Іґ10 І на блоке А6 и кнопки “АСД/ВРЧ” на блоке А10;

Установить все прочие плавные регуляторы в крайнее правое положение (кроме блока У4 .).

Установить ручку Х на передней панели в крайнее левое положение и нажать кнопку І< 20 дБ І

5. Нажать кнопку ІнакалІ затем ІРаботаІ.

Регуляторами І¬® І ,ІІ , , , и І установить линию луча и получить четкое изображение .

нажать кнопку “НАКАЛ”, а затем “Работа”

Верхняя панель

 

Передняя панель и верхняя панель.

Передняя панель

Верхняя панель

1.7

Установить требуемую частоту ультразвука

Нажать кнопку МГц І 2,5 І.

Верхняя панель

1.8

Подключить ПЭП П 111-2,5-К12.

Разьемы І(¬І и І(® І.

Передняя панель.

Настроить на контрольном образце масштаб развертки. Подключить прямой ПЭП, установить его на торец КО и получить донный сигнал (он появляется перед вторым зондирующим сигналом и имеет самую большую амплитуду), кнопками аттенюатора уменьшают его до высоты масштабной сетки экрана ЭЛТ, затем регулятором “длительность развёртки” на блоке А6 выставляют донный сигнал на 10-е деление горизонтальной шкалы канала ЭЛТ (рисунок 3). При этом масштаб развёртки для продольных волн составляет Мпрод=250 мм/дел, поскольку длина оси электровоза ВЛ10 составляет 2520мм. При подключении к дефектоскопу наклонного ПЭП, излучающего поперечные волны, масштаб развёртки становится равен Мпопнр.=140 мм/дел.

Информация о работе Ультразвуковой контроль оси колёсной пары электровоза ВЛ-10