Решения задач линейного программирования геометрическим методом

Автор работы: Пользователь скрыл имя, 22 Апреля 2013 в 18:18, курсовая работа

Краткое описание

Целью данной курсовой работы является: освоить навыки использования геометрического метода для решения задач линейного программирования. Для этого были поставлены следующие задачи:
1) Изучить теоретические сведения, необходимые для решения задач линейного программирования геометрическим методом.
2) Разобрать алгоритм решения ЗЛП геометрическим методом.
3) Решить поставленные задачи, используя рассмотренный метод решения задач линейного программирования.

Содержание

Введение 3
I. ТЕОРЕТИЧЕСКИЙ РАЗДЕЛ 4
1.1 Линейное программирование. 4
1.2 Формулировка задачи. 5
1.3 Основные понятия линейной алгебры и выпуклого анализа, применяемые в теории математического программирования. 7
1.4 Математические основы решения задачи линейного программирования графическим способом. 9
1.4.1 Математический аппарат. 9
1.4.2 Геометрическая интерпретация задачи линейного программирования. 11
1.4.3 Этапы решения графического метода задач линейного программирования 13
II. ПРАКТИЧЕСКИЙ РАЗДЕЛ 18
Задача № 1. 18
Задача № 2. 21
Задача № 3. 24
Задача № 4. 27
Задача № 5. 30
Заключение. 33
Список литературы 34

Прикрепленные файлы: 1 файл

коля 4.doc

— 433.50 Кб (Скачать документ)

а21х1 + а22х2 + … + а2nхn b2

……………………………..

аm1х1 + аm2х2 + … + аmnхn bm


хj ≥ 0, j = 1, 2, …, n.

 

Рассмотрим эту задачу на плоскости, т.е. при п = 2. Пусть система неравенств (**), (***) совместна (имеет хотя бы одно решение):

 

а11х1 + а12х2 b1

а21х1 + а22х2 b2

…………..

аm1х1 + аm2х2 bm

x1 ≥ 0; х2 ≥ 0.

 

Каждое неравенство этой системы  геометрически определяет полуплоскость  с граничной прямой аi1х1 + аi2х2 bi i = 1, m. Условия неотрицательности определяют полуплоскости соответственно с граничными прямыми x1 = 0; х2 = 0.. Система совместна, поэтому полуплоскости, как выпуклые множества, пересекаясь, образуют общую часть, которая является выпуклым множеством и представляет собой совокупность точек, координаты каждой из которых составляют решение данной системы. Совокупность этих точек называют многоугольником решений. Это может быть точка, отрезок, луч, замкнутый многоугольник, неограниченная многоугольная область.


Если в системе ограничений (**) - (***) n = 3, то каждое неравенство геометрически представляет полупространство трехмерного пространства, граничная плоскость которого аi1х1 + аi2х2 + аi3х1 bi, а условия неотрицательности — полупространства с граничными плоскостями соответственно xi = 0 (i = 1, 2, 3). Если система ограничений совместна, то эти полупространства, как выпуклые множества, пересекаясь, образуют в трехмерном пространстве общую часть, которая называется многогранником решений.

Пусть в системе (**) - (***) п > 3, тогда  каждое неравенство определяет полупространство n-мерного пространства с граничной гиперплоскостью аi1х1 + аi2х2 + … + аinхn bi i = 1, т , а условия неотрицательности — полупространства с граничными гиперплоскостями xj = 0, j = 1, n.


Если система ограничений  совместна, то по аналогии с трехмерным пространством она образует общую  часть n-мерного пространства, называемую многогранником решений, так как координаты каждой его точки являются решением.

Таким образом, геометрически задача линейного программирования представляет собой отыскание такой точки многогранника решений, координаты которой доставляют линейной функции минимальное значение, причем допустимыми решениями служат все точки многогранника решений.

1.4.3 Этапы решения графического метода задач линейного программирования

Графический метод основан  на геометрической интерпретации задачи линейного программирования и применяется  в основном при решении задач  двумерного пространства и только некоторых задач трехмерного пространства, так как довольно трудно построить многогранник решений, который образуется в результате пересечения полупространств. Задачу пространства размерности больше трех изобразить графически вообще невозможно.

Пусть задача линейного программирования задана в двумерном пространстве, т. е. ограничения содержат две переменные.

Если в ЗЛП ограничения  заданы в виде неравенств с двумя  переменными, она может быть решена графически. Графический метод решения  ЗЛП состоит из следующих этапов.

Этап 1.

Сначала на координатной плоскости x1Ox2 строится допустимая многоугольная область (область допустимых решений, область определения), соответствующая ограничениям:

 

1.6)

 

Не приводя строгих доказательств, укажем те случаи, которые тут могут  получится.

  1. Основной случай - получающаяся область имеет вид ограниченного выпуклого многоугольника (рис. 1а).
  2. Неосновной случай - получается неограниченный выпуклый многоугольник, имеющий вид, подобный изображенному на рис. 1б. Подобная ситуация, например, получится, если в рассмотренном выше примере убрать ограничение х1 + х 2 ≤ 3. Оставшаяся часть будет неограниченным выпуклым многоугольником.

 


 

 

Наконец, возможен случай, когда неравенства (1.6) противоречат друг другу, и допустимая область вообще пуста.

Рассмотрим  теорию на конкретном примере:

Найти допустимую область  задачи линейного программирования, определяемую ограничениями

 

1.32)

 

 

Решение:

  1. Рассмотрим прямую –x1+x2 = 1. При x1 = 0, x2 = 0, а при x2= 0, x1= -1. Таким образом, эта прямая проходит через точки (0,1) и (-1,0). Беря x1 = x2 = 0, получим, что -0+0<1 и поэтому интересующая нас полуплоскость лежит ниже прямой, изображенной на рис. 4.а.
  2. Рассмотрим прямую . При , а при . Таким образом, эта прямая проходит через точки (0, -1/2) и (1,0). так как (4.б).
  3. Наконец, рассмотри м прямую . Она проходит через точки (0,3) и (3,0) и так как 0+0<3, то интересующая нас полуплоскость лежит ниже прямой, изображенной на рис. 4.в.

Сводя все вместе и  добавляя условия х1 ≥ 0,х2 ≥ 0 получим рисунок 5, где выделена область, в которой выполняются одновременно все ограничения (1.32). Обратим внимание на то, что получившаяся область имеет вид выпуклого многоугольника.

 

 

 

Этап 2.

Вернёмся теперь к  исходной задаче линейного программирования. В ней, кроме системы неравенств, есть еще целевая функция с1х12х2 =>max.

 


 

Рассмотрим прямую с1х12х2 = L. Будем увеличивать L. Что будет происходить с нашей прямой?

Легко догадаться, что  прямая будет двигаться параллельно  самой себе в том направлении, которое дается вектором (с12), так как это - вектор нормали к нашей прямой и одновременно вектор градиента функции

 

f(х12) = с1х12х2 .

 

А теперь сведем всё вместе. Итак, надо решить задачу

 

 

Ограничения задачи вырезают на плоскости некоторый многоугольник. Пусть при некотором L прямая с1х12х2 = L пересекает допустимую область. Это пересечение дает какие-то значения переменных (х12), которые являются планами.

Этап 3

Увеличивая L мы начнем двигать  нашу прямую и её пересечение с  допустимой областью будет изменяться (см. рис. 7). В конце концов эта  прямая выйдет на границу допустимой области - как правило, это будет одна из вершин многоугольника. Дальнейшее увеличение L приведёт к тому, что пересечение прямой с1х12х2 = L с допустимой областью будет пустым. Поэтому то положение прямой с1х12х2 = L, при котором она вышла на граничную точку допустимой области, и даст решение задачи, а соответствующее значение L и будет оптимальным значением целевой функции.

 

Рис. 7

 

 

II. ПРАКТИЧЕСКИЙ РАЗДЕЛ

Задача №1

 

Для производства двух видов  изделий А и В предприятие использует три вида сырья. Другие условия задачи приведены в таблице 1.1..

 

Таблица 1.1.

 

Вид сырья

Нормы расхода сырья на одно изделие, кг

A B

 

Общее количество сырья, кг

I

12 4

300

II

4 4

120

III

3 12

252

Прибыль от реализации одного изделия, ден. ед.

 

30 40

?


 

Составить такой план выпуска продукции, при котором прибыль предприятия от реализации продукции будет максимальной при условии, что изделие В надо выпустить не менее, чем изделия А.


Решение.

Обозначим через х1 и х2 количество единиц продукции соответственно А и В, запланированных к производству. Для их изготовления потребуется (12 х1 +4 х2) единиц ресурса I, (4х1 +4х2) единиц ресурса II, (3х1 +12х2) единиц ресурса III. Так как, потребление ресурсов I, II, III не должно превышать их запасов, то связь между потреблением ресурсов и их запасами выразится системой неравенств:

 

 12х1 +4х2 ≤ 300;             3х1 + х2 ≤ 75;


 4х1 +4х2 ≤ 120;                  х1 + х2 ≤ 30;


1 +12х2 ≤ 252.                 х1 +4х2 ≤ 84.

 

По смыслу задачи переменные х1 ≥ 0, х2 ≥0. (1,1)

Конечную цель решаемой задачи – получение максимальной прибыли при реализации продукции – выразим как функцию двух переменных х1 и х2.

Суммарная прибыль А  составит 30х1 от реализации продукции А и 40х 2 от реализации продукции В, то есть : F = 30х1 +40х 2.  (1,2)

Изобразим многоугольник  решений данной задачи.

В ограничениях задачи поменяем знаки неравенства на знаки равенства.

Проведем оси: на горизонтальной будут указываться значения переменной х1, а на вертикальной — х2 .Далее рассмотрим условие неотрицательности переменных: x1 ≥ 0 и х2 ≥ 0. Эти два ограничения показывают, что пространство допустимых решений будет лежать в первом квадранте (т.е выше оси x1 и правее оси х2).

Чтобы учесть оставшиеся ограничения, проще всего заменить неравенства на равенства, в результате чего получится система уравнений прямых:

 

1 + х2 = 75;


х1 + х2 = 30;

х1 +4х2 = 84.

 

а затем на плоскости  провести эти прямые.

Например, неравенство 3х1 + х2 ≤ 75 заменяется уравнением прямой 3х1 + х2 = 75. Чтобы провести эту линию, надо найти две различные точки, лежащие на этой прямой Можно положить х1 = 0, тогда х2 = 75/1 = 75.. Аналогично для х2 = 0 находим x1 = 75/3 = 25. Итак, наша прямая проходит через две точки (0, 75) и (25;0). Аналогично найдём остальные точки и запишем их в таблицу 1.2..

 

Таблица 1.2.

3х1 +х2 ≤ 75;

х1 +х2 ≤ 30;

х1 +4х2 ≤ 84.

х1

х2

х1

х2

х1

х2

0

75

0

30

0

21

25

0

30

0

84

0


 

Согласно данной таблицы, построим график в программе Excel.

 

 

Заштрихованная область, изображённая на рисунке, является областью допустимых значений функции F. Т.к. целевая функция F стремиться к max, то идя по направлению вектора n, получим точку B с оптимальным решением. Для определения ее координаты возьмем две прямые, на пересечении которых она образуется:

 3х1 + х2 ≤ 75,           х1 = 19,64,


х1 + 4х2 ≤ 84,               х2 = 16,09. , т. е. B(16,09; 19,64)

 

максимальное значение линейной функции равно :

Fmax = 30*16,09 + 40*19,64 = 1232,80.

Итак, Fmax = 1232,80 при оптимальном решении х1 = 16,09, х2 = 19,64, т. е. максимальная прибыль в 1232,80 ден. ед. может быть достигнута при производстве 16,09 единиц продукции А и 19,64 единиц продукции В.

Ответ: Fmax = 1232,80.

Задача № 2

 

Для изготовления двух видов  продукции Р1 и Р2 используют три вида сырья: S1, S2, S3. Запасы сырья, количество единиц сырья, затрачиваемых на изготовление единицы продукции, а также величина прибыли, получаемая от реализации единицы продукции, приведены в таблице 2.1.

 

Таблица 2.1.

Вид сырья

Запас сырья

Количество единиц сырья, идущих на изготовление единицы продукции

Р1

Р2

S1

20

2

5

S2

40

8

5

S3

30

5

6

Прибыль от единицы продукции, руб.

50

40


 

Необходимо составить такой план выпуска продукции, чтобы при ее реализации получить максимальную прибыль.

Решение.

Обозначим через х1 количество единиц продукции Р1, а через х2 – количество единиц продукции Р2. Тогда, учитывая количество единиц сырья, расходуемое на изготовление продукции, а так же запасы сырья, получим систему ограничений:


 

1 + 5х2 ≤ 20

1 + 5х2 ≤ 40

1 + 6х2 ≤ 30

 

которая показывает, что  количество сырья, расходуемое на изготовление продукции, не может превысит имеющихся  запасов. Если продукция Р1 не выпускается, то х1=0; в противном случае x1 = 0. То же самое получаем и для продукции Р2. Таким образом, на неизвестные х1 и х2 должно быть наложено ограничение неотрицательности: х1 ≥ 0, х2 ≥ 0.

Конечную цель решаемой задачи – получение максимальной прибыли при реализации продукции – выразим как функцию двух переменных х1 и х2. Реализация х1 единиц продукции Р1 и х2 единиц продукции Р2 дает соответственно 50х1 и 40х2 руб. прибыли, суммарная прибыль Z = 50х1 + 40х2 (руб.)

Условиями не оговорена  неделимость единица продукции, поэтому х1 и х2 (план выпуска продукции) могут быть и дробными числами.

Требуется найти такие  х1 и х2, при которых функция Z достинает максимум, т.е. найти максимальное значение линейной функции Z = 50х1 + 40х2 при ограничениях

 

1 + 5х2 ≤ 20


1 + 5х2 ≤ 40

Информация о работе Решения задач линейного программирования геометрическим методом