Нетрадиционные виды транспорта

Автор работы: Пользователь скрыл имя, 30 Июня 2014 в 22:51, курсовая работа

Краткое описание

Дальнейший прогресс транспорта требует использования последних, постоянно обновляемых результатов науки и передовой техники и технологии. Необходимость освоения возрастающих грузовых и пассажирских потоков, усложнение условий для сооружения транспортных линий в необжитых, трудных по топографии районах и крупных городах. Стремления повысить скорость сообщений и частоту отправления транспортных единиц, необходимость улучшения комфорта и снижения себестоимости перевозок – все это требует совершенствования не только существующих транспортных средств, но и поиска новых, которые могли бы более полно удовлетворить поставленным требованиям, чем традиционные виды транспорта. К настоящему моменту разработано и реализовано в виде постоянных или опытно-эксплуатационных установок несколько новых видов транспортных средств и значительно больше существует в виде проектов, патентов или просто идей.

Содержание

Введение..…………………………………………………..….………....... 3
1 Причины появления нетрадиционного вида транспорта и его признаки...................................................................................................................5
2 Основные виды нетрадиционного транспорта.....................................11
3 Развитие нетрадиционного вида транспорта видов транспорта…......27
Заключение……………………………..……………………………...… 31
Список использованных источников...…………….………..…………..32

Прикрепленные файлы: 1 файл

Нетрадиционные.docx

— 2.19 Мб (Скачать документ)

Традиционная концепция раздельного технического обслуживания тягового подвижного состава и пассажирских вагонов с разными интервалами проведения профилактических и ремонтных работ оказывается несостоятельной при расчетах соотношения между LCC и экономической эффективностью. В связи с этим в Гамбурге, Мюнхене и Берлине для технического обслуживания поездов ICE были построены специализированные депо, в которых внедрена автоматическая система диагностики. Благодаря этому поезда ICE имеют годовой пробег 550 тыс. км, в то время как для традиционных поездов на локомотивной тяге он составляет 300 тыс. км.  

 В этих депо обслуживают поезда с концевыми моторными вагонами (ICE1, ICE2) и поезда с распределенной тягой (ICE3, ICE-T). Длина ремонтного цеха составляет 400 м, что соответствует максимальной длине поезда и стандартной в Европе длине платформы.

Коммерческим аргументом в пользу применения моторвагонных поездов с распределенной тягой является увеличенная полезная длина. Если бы поезд ICE3 длиной 200 м и мощностью 8 МВт не был с распределенной тягой, ему потребовалось бы два моторных вагона по концам. При этом полезная длина уменьшилась бы на 30 м (15 %), что означает потерю полезной длины пассажирской платформы и уменьшение числа продаваемых пассажирских мест. Даже при одном моторном вагоне в головной части и ограничении максимальной мощности поезда 6 МВт была бы значительная потеря пассажирских мест по сравнению с моторвагонным той же длины.

Поезд длиной 200 м, ведомый локомотивом и составленный из двухэтажных вагонов, по самым приближенным расчетам на 10 % дороже в изготовлении, чем поезд такой же длины из обычных вагонов. При этом число мест для сидения больше на 20 %, чем в обычном поезде.

На Тайване, например, потребовалось при коротких пассажирских платформах максимально увеличить число мест в поезде. В европейском варианте (Alstom/Siemens) эту проблему предлагалось решить путем использования двухэтажных поездов с концевыми моторными вагонами, в японском — за счет моторвагонных поездов с вагонами увеличенной ширины (пять мест в ряду). Вариант двухэтажных поездов с распределенной тягой и еще бóльшим числом мест был признан нереальным из-за дефицита свободного пространства под кузовами вагонов для размещения оборудования.  

 К недостаткам двухэтажных поездов в высокоскоростном движении следует отнести:

- увеличенную нагрузку на ось;

- большой объем вытесняемого воздуха при движении в тоннелях;

-увеличенную боковую поверхность, воспринимающую ветровую нагрузку.

В высокоскоростном движении наметилась тенденция к использованию моторвагонных поездов. При разработке ICE3 руководствовались теми же соображениями, что и в начале 1970-х годов, когда создавался моторвагонный электропоезд серии 403: высокая скорость и соответствующая ей аэродинамика, повышенная мощность при хорошем сцеплении за счет большого числа моторных осей, комфортность.

Япония с самого начала разработки системы Синкансен ориентировалась на поезда с распределенной тягой, в то время как во Франции предпочтение отдали поездам TGV с концевыми моторными вагонами. Однако там тоже ведутся работы над высокоскоростным моторвагонным поездом AGV.

В дизель-поездах большим недостатком является вибрация, передаваемая кузову от дизеля. К этому добавляется шум вентиляторов, которые охлаждают тяговые преобразователи, размещенные, как и дизель, под кузовом.

Для эксплуатационных служб поездá на локомотивной тяге более удобны с точки зрения изменения составности в зависимости от колебаний пассажиропотока. В них пассажиры в поисках свободного места могут беспрепятственно проходить через весь состав, что невозможно в моторвагонных поездах, составленных из двух и более секций.

Для моторвагонных поездов и челночных, имеющих концевой вагон с кабиной управления, большое значение имеют поперечные ветровые нагрузки, величина которых при повышенной скорости и малой массе поезда становится опасной. В наибольшей степени ветровым нагрузкам подвержены японские поезда Синкансен, имеющие осевую нагрузку 12 т. Стесненные габариты тоннелей на их линиях потребовали поиска аэродинамически оптимального решения лобовой части поездов. Узкий и удлиненный обтекатель облегчает прохождение тоннелей. Однако при движении на открытых участках под действием бокового ветра на нем возникает «эффект крыла», в результате которого аэродинамическая подъемная сила разгружает переднюю тележку.

В Японии при создании поездов Синкансен стремятся к максимальному облегчению конструкций. В первые годы на линиях Синкансен имели место серьезные проблемы с состоянием верхнего строения пути. Это в основном объяснялось низким качеством щебеночного балласта при большой интенсивности движения высокоскоростных поездов.

Вагоны поездов ICE3 и ICE-T изготавливают в Германии разные компании, объединенные в консорциум. Формирование поездов происходит лишь на путях испытательного центра компании Siemens в Вегберг-Вильденрате.

В грузовых перевозках на сегодняшний день альтернативы локомотивной тяге нет.

Экологические проблемы, связанные с экономией топливных ресурсов, привели к созданию парусных судов, использующих энергию ветра для движения. Так, в Японии в 1980 г. Стали строить суда каботажного плавания дедвейтом 1 800 т и скоростью 12 узлов с двумя парусами площадью по 100 м, высотой 12,5м при ширине 8м. Такая конструкция позволяет экономить до 38% топлива. При площади паруса 320 м, в дедвейте 26 тыс. т и компьютерном управлении расход топлива был сокращен наполовину. В нашей стране построены учебные парусные суда, например парусник «Мир» показанный на рисунке 11.

Рисунок 11 - Быстроходный учебный парусник "Мир", 1987г.

Одновременно с парусом может применяться двигатель для повышения скорости или маневренности при безветрии, для прохода сложных участков, при швартовке.

Электромобили, солнцемобили, солнечные велосипеды, электромоторные суда с солнечными батареями - все эти экологически чистые транспортные средства появились всего лет 15-20 назад. За прошедшие годы электромобили перестали быть редкостью. Они находят все большее применение, особенно в крупных городах, перенасыщенных автотранспортом. Что касается солнцемобилей, то сегодня их можно встретить на дороге очень редко. Это очень дорогое удовольствие. Между тем становится все более популярным и доступным по цене водный гелиотранспорт - маломерные суда, приводимые в движение солнечной энергией. Более всего они подходят для водного туризма и рыбалки. На рисунке 12, показан пример солнцемобиля.

Рисунок 12 - Солнцемобиль - рекордсмен "Мечта"

Фотоэлектрические преобразователи энергии, химические источники тока и системы электропривода, используемые на "солнечных" судах, становятся все более эффективными. Они занимают совсем немного места, поэтому даже на небольших "семейных" яхтах можно разместить разнообразное дополнительное оборудование - от биотуалета до малогабаритной сауны. Это особенно привлекает привыкших к благам цивилизации путешественников. "Солнечные" суда почти бесшумны. На них разговаривают, не повышая голоса, слушают пение птиц, плеск волн и шум ветра, дышат свежим воздухом. Воспользоваться таким транспортом захочет каждый, кто любит совершать водные путешествия.

 

 

 

 

 

 

 

 

 

3 РАЗВИТИЕ НЕТРАДИЦИОННОГО ВИДА ТРАНСПОРТА

Электромобили. Этот вид транспортных средств приводится в движение одним или несколькими электрическими двигателями, питаемыми от аккумуляторных батарей или топливных элементов. Достоинства электромобиля — бесшумность, отсутствие токсичных выпускных газов, высокие динамические качества. Недостатки электромрбиля – это малый запас хода и большая масса.

Во Франции сконструирован электический велосипед, развивающий скорость до 45 км/ч, эксплуатационные расходы которого составляют один франк.

Транспортные системы непрерывного действия. К таким системам относится, в частности, движущийся тротуар. Он впервые демонстрировался на Всемирной выставке в Чикаго в 1893 г. Движущийся тротуар, или «пассажирский конвейер» с шириной ленты 600 – 1000 мм перемещает пассажиров на небольшие расстояния на горизонтальных участках или с небольшим, до 15% наклоном.

Сфера применения таких конвейеров— подземные переходные через улицы; пассажирские туннели на пересадочных станциях метро, подземного скоростного железнодорожных станциях; аэропорты, подходы к выстовкам; крупные торговые и промышленные предприятия и т.д.

Применяют два принципа действия этих конвейеров: ленточные и бесконечным резиновым полотном на стальной основе и пластинчатые (звеньевые) по типу горизонтальных эскалаторов. Провозная способность таких линий составляет 6 – 12 тыс. чел/ч, скорость – 2,7 км/ч – 15 км/ч. Преимущества применения движущихся тротуаров – абсолютная безопасность движения, минимум шума и другого воздействия на окружающую среду, отсутствие времени на ожидание, полная автоматизация работы.

В США, Германии и других странах интенсивно разрабатываются разнообразные системы этого вида транспорта, в том числе кабинного типа (карвейер). Например, система Vimm – это две параллельно движущиеся с нарастанием скорости в одном направлении платформы и неподвижный тротуар. Система Trans обеспечивает на маршруте скорость до 18 км/ч при скорости в процессе посадки около 3км/ч за счет «вытягивания» ленты (у перрона ширина ленты 3,6 м, а на маршруте – 0,6 м).[10]

Системы кабинного такси на принципах монорельса эккпериментируются с 1973 г., например Rohr в США обеспечивает скорость до 36 км/ч.

Пневмопоезда. История применения трубопроводного транспорта для перемещения грузов и пассажиров началась в 1840 г.(«атмосферические дороги» и «пневмопоезд»). Основные преимущества пневмопоезда в трубе – высокая скорость, обособленный путь, независимость от климотических условий, экологическая чистота и возможность полной автоматизации управления. Высокая первоначальная стоимость может быть отнесена к единственному недостатку.

Сферой применения этого вида транспорта является перемещение "сухих" грузов (песка, гравия, щебня и др.), а также внутригородские пассажирские перевозки (проезд к аэропорту, зонам отдыха, городам-спутникам) на относительно небольшие расстояния. В проектах по пневмотранспорту используются три принципа: пневмотранспорт; пневмотранспорт с применением электротяги и гравитационно-вакуумный. По первому принципу движение осуществляется силой сжатого воздуха (перед вагоном воздух откачивают, а затем сзади подается сжатый воздух, благодаря чему обеспечивается скорость 80 км/ч). Расстояния между станциями 0,5—2 км. При осуществлении второго принципа обеспечиваются скорости 150—200 км/ч. Он удобен в пригородных сообщениях. При гравитационно-вакуумном принципе поезд движется в трубе диаметром до 3 м в безвоздушном пространстве, а труба устанавливается под уклоном для обеспечения ускорения под действием силы тяжести. Патент на этот способ получен в США в 1969 г. [8]

Если применить в трубопроводном транспорте магнитную подвеску, то пассажирский экспресс от Москвы до Санкт-Петербурга проделает путь за 0,5 ч. В США спроектирована модель трубы с равномерно размещенными окнами, благодаря чему при скорости 72 км/ч пассажир видит пейзаж за окном.

В России построено и используется несколько пневмотранспортных линий для транспортировки нерудных стройматериалов (песчано-гравийной смеси) на заводе ЖБИ.

Монорельсовый транспорт. Монорельсовые системы с полуавтоматизированным и автоматизированным управлением делятся на системы с фиксированными маршрутами и маршрутами индивидуального пользования. На действующих в некоторых странax монорельсовых дорогах скорости движения достигают 50 км/ч, на проектируемых — 500 км/ч. Стоимость поездки на этих дорогах в два раза дешевле метро. Этот вид транспорта экологически чист, однако пока не преодолены шум и вибрация. Примером млжет быть система Airtrans в Далласском аэропорту (США), которая состоит из 10 маршрутов и имеет провозную способность 9 тыс. чел./ч, 6 тыс. единиц багажа и 32 т почтовых отправлений. Подобные системы имеются в Англии, Франции, Японии и других странах.

Транспорт энергии. Отличительная особенность технического оснащения транспорта энергии, как и трубопроводного, состоит в том, что кабели или линии электропередачи (ЛЭП) являются и подвижным составом, и путями, по которым проходит груз (в данном случае энергия). Энергия передается по линиям электропередач; в городах она поступает на специальные распределительные устройства.

      Такое большое  количество энергии передать  с помощью существующих воздушных  линий практически невозможно. Проблему  будут решать ЛЭП повышенного  напряжения (1000 кВ и более). Так, Экибастуз  должен передавать энергию под  напряжением 1250 кВ.

      Линии электропередач  с повышенным напряжением и  постоянным током (постоянный ток  дает возможность передавать  энергию с большей скоростью, а при переменном токе возникает  больше потерь) должны проходить  вне городов, где происходит преобразование  постоянного тока в переменный. С точки зрения экологии, ЛЭП  требуют полосу отчуждения до 100 м. Подземные силовые кабели  при высокой концентрации энергии  из-за неизбежных потерь нагревают  почву вплоть до высыхания; при  проведении параллельных линий  возможно их нежелательное взаимное  влияние из-за тепловых потерь.

      Проблемы  и тенденции развития транспорта  энергии: увеличение мощности передачи (объема транспортировки) благодаря  поиску новых способов, прежде  всего охлаждения, при котором  параллельно кабелю прокладывают  трубопровод с водой или располагают  трубку внутри кабеля, помешенного  в трубу большего диаметра  с охлаждающей жидкостью. Такой  способ увеличивает объем транспортировки  в 4 раза. Кроме того, рассматриваются  вопросы замены материала для  изготовления кабелей, повышения  напряжения в сетях.

Информация о работе Нетрадиционные виды транспорта