Надежность и долговечнось автомобиля

Автор работы: Пользователь скрыл имя, 23 Июня 2014 в 12:19, лекция

Краткое описание

Надежность является комплексным свойством, которое в зави­симости от назначения автомобиля и условий его эксплуатации может включать безотказность, долговечность, ремонтопригодность и сохранность в отдельности или определенное сочетание этих свойств как для автомобиля, так и для его агрегатов (систем, узлов и деталей), направленным на выполнение автомобилем рабочих функций с установленными показателями в течение ресурса до капитального ремонта.

Прикрепленные файлы: 1 файл

глава1.doc

— 144.50 Кб (Скачать документ)

 

3) упрощением  конструкции автомобиля, применением  минимального числа деталей и  конструктивных элементов. Решение  этой задачи усложняется тем, что в каждой новой модели автомобиля конструктор стремится реализовать все возрастающие эксплуатационные требования. Поэтому исключительно важно использование отработанных заранее узлов, проверенных на предыдущих серийных моделях элементов конструкций деталей, обеспечивающих высокую надежность узлов;

4) обеспечением  безотказности отдельных систем  автомобилей в 

 

 

некоторых случаях за счет частичного резервирования элементов схемы. Чаще это относится к узлам, от которых зависит безопасность движения и безотказность которых должна быть выше, чем других узлов. Примером такого резервирования является осуществление раздельного привода тормозных механизмов передних и задних колес, что исключает аварийный отказ системы при отказе одного из приводов;

5) обеспечением высокой прочности деталей без увеличения их массы (приданием им рациональных форм, применением материалов с повышенными прочностными свойствами);

6) повышением  износостойкости деталей, учитывая  то, что именно недостаточная  износостойкость обусловливает наступление предельного состояния таких деталей, как, например, крестовины и шлицевые соединения карданной передачи, шкворневые соединения управляемых мостов, шаровые соединения рулевых тяг и др. Помимо правильного выбора размеров сопряженных деталей, следует тщательно подбирать для них материалы и использовать наиболее эффективные технологические методы упрочнения и повышения износостойкости трущихся поверхностей;

7) исключением  или максимальным уменьшением  концентрации напряжений в наиболее  нагруженных и ответственных деталях автомобиля (у поворотных кулаков — за счет плавного перехода от стержня к фланцу, обеспечения малой шероховатости и термообработки ТВЧ переходной галтели; в нагруженных шестернях коробок передач, раздаточных коробок и ведущих мостов — путем увеличения радиуса окружности; в лонжеронах рамы — исключением отверстий на горизонтальных полках и т. п.);

8) обеспечением  возможности восприятия высоких  циклических и динамических нагрузок  для ряда деталей двигателя, трансмиссии  и ходовой части автомобилей (коленчатых валов двигателей, цапф мостов, рычагов рулевого привода и т. д.). Такие детали должны быть изготовлены из материалов, обладающих высокими сопротивлением усталости и ударной вязкостью;

9) исключением  возможности резкого возрастания нагрузок в трансмиссии автомобилей и ходовой части, смягчением их за счет применения гидромеханических передач, демпферных устройств, эластичных подвесок и др.;

10) обеспечением  необходимой жесткости деталей  за счет целесообразных их  форм и рационального расположения опор, что особенно важно, например, для надежной работы зубчатых колес и подшипников, расположенных на валах коробок передач и раздаточных коробок автомобилей;

11) снижением напряжений  в несущих деталях автомобилей — рамах грузовых автомобилей и кузовах легковых автомобилей и автобусов — за счет рационального выбора их размеров и форм, обеспечивающих достаточную жесткость в сочетании с необходимой податливостью элементов. Оптимальные соотношения этих свойств устанавливаются в результате тщательных расчетно-исследовательских и опытно-конструкторских работ. Учитывая, что предельное состояние автомобиля в целом наступает при достижении предельного состояния рамы (грузового или легкового автомобиля и автобуса), отработка их конструкции должна быть особенно тщательной;

 

 

12) выбором конструктивных  решений, обеспечивающих сборку  деталей только в определенном  положении, если иное положение  может привести к их поломке  или снижению надежности. Так, например, на вилке и трубе карданного  вала выбивают стрелки, которые должны быть при сборке совмещены, чтобы исключить нарушение балансировки и возникновение вибраций, приводящих к увеличенным нагрузкам на подшипники и к изгибу вала;

 

13) обеспечением  надежной затяжки резьбовых соединений, в ответственных соединениях — исключением самоотворачивания (особенно для резьбовых соединений, расположенных внутри агрегатов), для соединений, не нуждающихся в частой разборке (например, для регулировки),— применением самостопорящихся крепежных деталей;

14) предупреждением коррозии деталей за счет обеспечения эффективной антикоррозионной защиты, особенно кабин и рам грузовых автомобилей, кузовов легковых автомобилей и автобусов, резьбовых соединений;

15) созданием необходимых  условий для оптимальных температурных  режимов работы деталей трансмиссии, например подбором уровня масла в агрегате, хорошим и удобным подводом смазочного материала к трущимся деталям и надежным уплотнением, исключающим его потери. Применением уплотнительных манжет и колец из материалов, не теряющих эластичность при изменении температуры окружающей среды и не стареющих длительное время, для уплотнения фланцевых и резьбовых соединений — герметиков различных типов;

16) широким использованием  конструкций лучших аналогичных  отечественных и зарубежных автомобилей, а также машин смежных отраслей промышленности;

17) обеспечением  эффективной очистки воздуха, топлива  и масла;

18) созданием условий  для локализации отказа, с тем  чтобы его последствия были  минимальными;

19) совершенствованием  эксплуатационной технологичности; улучшением приспособленности конструкций автомобиля, агрегата или узла к выполнению с наименьшей трудоемкостью необходимых операций по предупреждению (техническое обслуживание) и устранению (ремонт) неисправностей и отказов с целью поддержания надежности автомобиля в данных условиях эксплуатации.

Для обеспечения минимальной трудоемкости ТО и ремонтов автомобиля в эксплуатации в конструкции необходимо предусматривать:

- минимальное  количество деталей и точек, требующих  ТО (смазывания, крепления, регулировки, ухода);

- доступность  к обслуживаемым узлам и простоту  выполнения каждой операции ТО  и ремонта;

- возможность  устранения неисправности или  отказа без разборки узла и  с минимальной разборкой других  узлов автомобиля;

- максимальную  унификацию узлов, деталей, крепежных соединений, размеров инструмента, приспособлений, приборов, необходимых для ТО и ремонта, минимальную потребность в специальном инструменте;

 

 

 

- ограниченную  номенклатуру топлива, смазочных  материалов и жидкостей;

легкосъемность агрегатов и деталей, подвергающихся частому демонтажу в эксплуатации;

возможность демонтажа тормозных барабанов для осмотра и обслуживания механизмов

- тормозов без  демонтажа ступиц колес;

- свободный доступ  к вентилям шин сдвоенных колес;

- применение штекерных разъемов, позволяющих снимать основные узлы и осветительные приборы без развинчивания контактных соединений;

- обеспечение  свободного доступа механизированным  инструментом или стандартными  динамометрическими ключами к  крепежным соединениям большого или нормированного усилия затяжки; к остальным крепежным соединениям — стандартным крепежным инструментом;

- установку в  конструкциях сборочных единиц  специальных приспособлений и  устройств для быстрого и удобного  подсоединения стандартной диагностической аппаратуры.

Надежность автомобиля в значительной степени зависит от качества изготовления деталей. На стадии производства автомобиля использование прогрессивных технологических процессов создает условия не только для стабильного и бездефектного изготовления деталей и сборочных единиц в соответствии с требованиями конструкторской документации, но и способствует повышению их долговечности. Поэтому на всех стадиях проектирования и подготовки изделия к производству задачей конструктора совместно с технологическими службами является тщательная отработка конструкции на технологичность. Технологичность конструкции изделия — это совокупность ее свойств, обеспечивающих минимальные затраты труда, средств, материалов и времени при технической подготовке производства, изготовлении, эксплуатации и ремонте. Она оценивается. в сравнении с соответствующими показателями однотипных изделий того же назначения при обеспечении установленных значений показателей качества и принятых условий изготовления, эксплуатации и ремонта.

Повышение качества изделий в большинстве случаев связано с повышением точности обработки и сборки деталей. Изготовление деталей по более высокому квалитету точности связано с большими трудоемкостью и затратами на оборудование, что увеличивает себестоимость изделия. Но при этом обеспечиваются более высокая точность сопряжений, постоянство характера этих сопряжений для большой партии деталей и узлов при их серийном или массовом выпуске, более благоприятные условия для работы сопряженных деталей, а в конечном итоге — высокие эксплуатационные показатели машин. Изготовление деталей по расширенным допускам проще, но обусловливает снижение их гарантированной точности и, следовательно, долговечности машин. Таким образом, задача конструктора и технолога — рационально на основе технико-экономического анализа разрешать противоречия между эксплуатационными требованиями и технологическими возможностями исходя прежде всего из выполнения эксплуатационных

 

 

требований. При таком анализе должны учитываться все элементы затрат, включая затраты на разработку, на производство и связанные с эксплуатацией изделия.

При проектировании необходимо устанавливать соответствующие функциональному назначению детали или сборочной единицы рациональные квалитеты (классы) точности и чистоту обработки, предельные отклонения формы и расположения поверхностей. Например, зубчатые колеса, изготовленные с небольшой точностью, не могут работать при высоких скоростях вращения, так как при этом в передаче возникают дополнительные ударные нагрузки.

Обеспечение заданных точности изготовления, геометрической формы и шероховатости поверхностей сопряженных деталей способствует повышению надежности подшипниковых узлов и износостойкости опорных поверхностей, в частности при заданной шероховатости нагруженных валов — необходимого сопротивления их усталости.

Предельное состояние деталей в большинстве случаев вызывается недостаточной износостойкостью, во многом зависящей от принятой технологии их изготовления. К основным технологическим факторам, оказывающим наибольшее влияние на износостойкость, относятся: качество материала детали, особенно ее поверхностного слоя; шероховатость поверхностей трения; точность размеров и геометрической формы; качество сборки.

При правильно назначенных и выполненных перечисленных факторах увеличение износостойкости может быть достигнуто за счет поверхностного упрочнения деталей автомобилей. Методы упрочнения различны: поверхностное пластическое деформирование (дробеструйная и пескоструйная обработка, накатывание, волочение, калибрование, центробежно-шариковая обработка и упрочнение взрывом и др.); поверхностная закалка, например токами высокой частоты (ТВЧ), а также комбинированные методы — термическая обработка и пластическое деформирование. Широкое распространение получили в автомобилестроении методы химико-термической обработки (цементация, азотирование, борирование и др.), диффузионное насыщение поверхностных упрочняемых слоев обрабатываемых деталей, упрочнение поверхностных слоев нанесением твердых износостойких покрытий, методы лазерного и электронно-лучевого упрочнения и некоторые другие.

Для повышения надежности деталей автомобилей используют, например, следующие технологические методы обработки.

1. Для зубчатых  колес и валов ведущих мостов, коробок передач и раздаточных  коробок применяют химико-термическую обработку — цементацию (высокотемпературное насыщение низкоуглеродистых сталей углеродом) и закалку. Такой обработке подвергаются детали из высоколегированных сталей. Так, например, для зубчатых колес и валов коробок передач иногда применяют сталь 15ХГН2ТА, цементацию производят на глубину 0,9...1,2 мм, твердость цементированного слоя 50... 63 HRCa, сердцевины зубьев — 37... 42 HRC3. Установлены и нормы на размер зерна.

Для зубчатых колес главной передачи автомобилей Минского автозавода применяют сталь 20ХНЗА, цементацию производят на глубину 1,2...1,5 мм;

 

 

 

твердость цементированного слоя не менее 59 HRC3, сердцевины зубьев —30...44 HRC3.

При цементации и закалке в результате структурных и термических превращений в цементированном слое возникают значительные остаточные напряжения. Этот метод химико-термической обработки при высокой твердости поверхности зуба и относительно вязкой его сердцевине обеспечивает высокую износостойкость и изгибную и контактную прочность.

Шевингование зубьев цилиндрических шестерен способствует повышению чистоты поверхности зубьев, устранению погрешностей профиля и размеров зубьев. Однако более существенным резервом повышения долговечности зубчатых колес является применение зубошлифования вместо чаще всего используемого шевингования.

Кроме того, для уменьшения концентрации нагрузки зубьям цилиндрических колес придают бочкообразную форму, при которой толщина зуба уменьшается от середины к торцам (например, у зубчатых колес главной передачи автомобилей КрАЗ — на

0,08 мм). Бочкообразная  форма зуба дает возможность  стабилизировать пятно контакта  в средней части зубьев и  тем самым увеличить долговечность  передачи за счет уменьшения  контактных напряжений и напряжений  при изгибе зубьев, улучшить их  приработку, уменьшить шум во время работы.

Применяют также упрочнение шестерен с помощью поверхностного наклепа методом дробеструйной обработки (изгибная прочность зубьев шестерен повышается на 10...15 %, а контактная— на 15...25,%).

В немалой степени долговечность зубчатых колес зависит от методов получения заготовок. Так, при изготовлении зубчатых колес методом горячей накатки прочность зубьев повышается на 15...40 % за счет расположения волокон металла по контуру зуба и возникновения полезных напряжений сжатия в его поверхностных слоях.

Информация о работе Надежность и долговечнось автомобиля