Автор работы: Пользователь скрыл имя, 24 Апреля 2014 в 12:01, курсовая работа
Тяговые расчеты - важная часть науки о тяге поездов. Методы тяговых расчетов включают комплекс способов и приемов определения массы состава, скорости движения и времени хода по перегону, расхода топлива, воды и электрической энергии на тягу, решение тормозных задач.
Это далеко не полный перечень вопросов, комплекс которых и составляет содержание курса теории тяги поездов и по прикладной части - тяговых расчетов.
Введение.............................................................................................................................2
1. Спрямление профиля пути............................................................................................3
1.1 Определение фиктивного подъема спрямленного участка.................................4
1.2 Проверка допустимости спрямления....................................................................5
1.3 Определение фиктивного добавочного подъема от кривых...............................6
1.4 Определение окончательных уклонов спрямленных участков..........................6
2. Определение веса состава..............................................................................................7
3. Проверка состава на прохождение наиболее трудного подъема с использованием кинетической энергией.......................................................................................................9
4. Проверка веса состава на трогание с места.................................................................12
5. Проверка веса поезда по длине приемоотправочных путей станции.......................13
6. Расчет данных для построения диаграммы удельных ускоряющих сил..................15
7. Определение допустимой скорости движения по наиболее крутому спуску с учетом тормозного обеспечения поезда.........................................................................19
8.Построение кривых скорости и времени хода поезда по участку.............................21
Заключение.........................................................................................................................23
Литература..........................................................................................................................24
где – средняя осевая нагрузка состава, т/ось.
Если в поезде имеются вагоны разных типов, то средняя осевая нагрузка состава определяется с учетом весовых долей вагонов каждого типа по формуле
где - осевые нагрузки разных типов, т/ось.
т/ось.
=0,8*21,4+0,2*16,2=20,4 т/ось.
Вес состава, найденный по условиям трогания с места, должен быть больше или равен весу, полученному для условия равномерного движения на расчетном подъеме.
Qтр >>Q (24)
34586>>3200 - условие выполняется.
5. Проверка веса поезда по длине приемоотправочных путей станции
Проверка веса поезда по длине приемоотправочных путей выполняется по формуле
(25)
где - длина приемо-отправочных путей станции, 850м ;
- длина локомотива по осям автосцепок, 17м ;
- длина вагона по осям автосцепок, 6-осных 17м ; 4-осных 14м.
10 – расстояние от локомотива до входного светофора.
Вес , который определяется исходя из длины приемо-отправочных путей с учетом весовых долей вагонов определяется по формуле:
(26)
т.
Так как поезд ограничен длиной и вес состава 3200т. , используем вес равный 4938т.
Точное число вагонов каждого типа определяется по формуле:
При Q=4938 т.:
При Q=3200 т.:
Полный вес состава с грузом и тарой вагонов находится по формуле:
(28)
т.
Полученный вес состава округляем с точностью до 50т. Получается вес равный 3200т.
Полученный вес используем при расчете данных для диаграммы удельных ускоряющих сил.
Вес состава нетто - чистый вес груза, перевозимого в поезде, определяется по формуле:
(29)
т.
м.
850 841 - условие выполняется.
Результат проверки удовлетворителен, значит поезд войдет на приемо-отправочные пути станции.
Количество поездов, необходимое для выполнения годового объема перевозок по подъездному пути, определяется по формуле:
поезд/год.
где Г - годовой грузооборот, 12 000 000т.
поезд./год.
6. Расчет данных для построения диаграммы
удельных ускоряющих сил
Диаграмма удельных ускоряющих сил рассчитывается и строится для конкретного поезда с весом локомотива P и весом состава Q при условии, что движение происходит на прямом горизонтальном пути. Построение выполняется в определенном масштабе, что позволяет использовать диаграмму удельных ускоряющих сил для построения кривых скорости υ(S) и времени хода поезда по участку t(s) методом графического интегрирования.
Диаграмма удельных ускоряющих сил состоит из четырех кривых:
Результаты расчетов сводятся в табл. 1-3.
Для построения кривой удельной ускоряющей силы используется тяговая характеристика локомотива Fk=f(υ).
В колонку 1(таблицы 1) вносятся значения скорости от 0 до конструкционной через 10 км/ч, расчетная скорость локомотива и скорости характерных точек тяговой характеристики, а в колонку 2- соответствующие этим скоростям значения силы тяги локомотива. Характерными точками тяговой характеристики, являются точка выхода на автоматическую характеристику и точки перехода с одного режима работы тяговых электродвигателей на другой. Значения основных удельных сопротивлений локомотива и состава (колонки 3 и 5) подсчитываются при соответствующих скоростях по эмпирическим формулам.
Таблица 1. Режим тяги на площадке.
|
|
|
| ||||
0 |
35400 |
1,9 |
228 |
1,2 |
3840 |
4068 |
9,4 |
5 |
32100 |
2,03 |
243,6 |
1,2 |
3840 |
4083,6 |
8,4 |
7,1 |
31000 |
2,1 |
252 |
1,3 |
4160 |
4412 |
8 |
10 |
23100 |
2,3 |
276 |
1,3 |
4160 |
4436 |
5,6 |
11 |
21100 |
2,4 |
288 |
1,3 |
4160 |
4448 |
5 |
13 |
16300 |
2,5 |
300 |
1,3 |
4160 |
4460 |
3,6 |
15 |
14700 |
2,7 |
3245 |
1,3 |
4160 |
4484 |
3,1 |
20 |
11200 |
3,3 |
396 |
1,4 |
4480 |
4876 |
1,9 |
22 |
10200 |
3,6 |
432 |
1,4 |
4480 |
4912 |
1,6 |
25 |
9200 |
4,03 |
483,6 |
1,4 |
4480 |
4963,6 |
1,3 |
29 |
8070 |
4,7 |
564 |
1,5 |
4800 |
5364 |
0,8 |
30 |
7600 |
4,9 |
588 |
1,5 |
4800 |
5388 |
0,7 |
40 |
5900 |
7,1 |
852 |
1,7 |
5440 |
6292 |
-0,1 |
50 |
4620 |
9,9 |
1188 |
1,9 |
6080 |
7268 |
-0,8 |
60 |
3900 |
13,3 |
1596 |
2,1 |
6720 |
8316 |
-1,3 |
70 |
3380 |
17,3 |
2076 |
2,4 |
7680 |
9756 |
-1,9 |
80 |
2700 |
21,9 |
2628 |
2,7 |
8640 |
12228 |
-2,9 |
90 |
2100 |
27,1 |
3552 |
3 |
9600 |
12852 |
-3,2 |
100 |
1660 |
32,9 |
3948 |
3,4 |
10880 |
14828 |
-4 |
Кривая холостого хода,
в отличие от кривой
В колонку 2 вносим значения
основных удельных
Колонку 4 для соответствующих скоростей вносятся данные из колонки 6 (т.1).
Таблица 2. Режим выбега на площадку.
|
|
|
|
|
|
0 |
2,4 |
288 |
3840 |
4128 |
1,2 |
10 |
2,5 |
300 |
4160 |
4460 |
1,3 |
20 |
2,8 |
336 |
4480 |
4816 |
1,5 |
30 |
3,05 |
366 |
4800 |
5166 |
1,6 |
40 |
3,4 |
408 |
5440 |
5848 |
1,8 |
50 |
3,8 |
456 |
6080 |
6536 |
2 |
60 |
4,3 |
516 |
6720 |
7236 |
2,2 |
70 |
4,9 |
588 |
7680 |
8268 |
2,5 |
80 |
55 |
660 |
8640 |
9300 |
2,8 |
90 |
6,2 |
744 |
9600 |
10344 |
3,1 |
100 |
7 |
840 |
10880 |
11720 |
3,5 |
В колонку 1 (табл. 3) вносим
также только значение
В колонку 2 переносим данные колонки 6 (табл. 2). В колонку 3 заносим величину расчетного тормозного коэффициента поезда, который определяется по формуле:
где: SКр – суммарное расчетное нажатие тормозных колодок поезда. Нажатие колодок и его вес учитывается при торможении на спусках более 20%о.
SКр=
Величины расчетных нажатий тормозных колодок на ось принимается для различных типов вагонов.
Значение расчетного коэффициента трения тормозной колодки о колею определяются в зависимости от материала колодок по различным формулам.
Для наиболее широко
применяемых чугунных
Значения 1000j, подсчитанные для соответствующих скоростей вносим в колонку 4 (табл. 3).
В колонку 5 вносим величины
удельной тормозной силы
Таблица 3. Режимы ступенчатого и экстренного торможения на площадке.
|
|
|
|
|
|
|
0 |
1,2 |
0,3
|
270 |
81 |
82,2 |
41,7 |
10 |
1,3 |
198 |
59,4 |
60,7 |
31, | |
20 |
1,5 |
162 |
48 |
49,5 |
25,5 | |
30 |
1,6 |
140,4 |
42,1 |
43,7 |
22,7 | |
40 |
1,8 |
126 |
37,8 |
39,6 |
20,7 | |
50 |
2 |
116 |
34,8 |
36,8 |
19,4 | |
60 |
2,2 |
108 |
32,4 |
34,6 |
18,4 | |
70 |
2,5 |
102 |
30,6 |
33,1 |
17,8 | |
80 |
2,8 |
97,2 |
29,2 |
32 |
17,4 | |
90 |
3,1 |
93,3 |
28 |
31,1 |
17,1 | |
100 |
3,5 |
90 |
27 |
30,5 |
17 |
Выполнив, таким образом, расчеты, строим диаграмму удельных ускоряющих сил (см. приложение 2).
7. Определение допустимой скорости движения по наиболее крутому спуску с учетом тормозного обеспечения поезда
Для обеспечения безопасного движения необходимо, чтобы поезд можно было оставить на любом участке, не превышая длину расчетного пути. Очевидно, что это условие труднее всего выполнить, если тормозить придется на крутом спуске. Поэтому перед тем как приступить к построению кривой скорости хода поезда по участку V(S) , следует решить тормозную задачу, состоящую в определении максимальной допустимой скорости движения по наибольшему спуску, исходя из имеющихся тормозных средств. В курсовой работе эта задача решается графическим способом.
Задачу решаем в следующем порядке:
Sn=0,278VH*tn (35)
Где : VH- начальная скорость торможения, км/ч;
tn – время подготовки тормозов к действию, с.
tn=
ic – крутизна спуска, для которого решается тормозная задача, 3,2‰;
вm – удельная тормозная сила при начальной скорости торможения (берется из таблицы 2).
Так как формула (32) представляет собой линейную зависимость, то графически это будет прямая линия, которую можно построить по двум точкам. Первая точка будет соответствовать скорости VH=0, при этом выражение (32) так же равно нулю, т.е. искомая точка есть начало координат. Вторую точку (К) определяем при скорости VH=VK – конструкционной скорости локомотива. Через точки О и К проводим прямую.
Построение кривой Sg(V) начинаем из точки А, проводя через нее перпендикуляр к лучу М-1 в пределах скоростного интервала от 0 до 10 км/ч (отрезок АВ). Затем из т. В проводим в интервале 10-20 км/ч перпендикуляр к лучу М-2 (отрезок ВС) и т.д. В результате получим ломаную линию графическую зависимость Sg(V), которая пересечет прямую Sn(V) в какой-то точке N. Ордината т. N и даст значение допустимой по условиям торможения скорости поезда на заданном спуске, а ее проекция на ось пути разделит полный тормозной путь на подготовительный - Sn и действительный – Sg.