Автор работы: Пользователь скрыл имя, 08 Апреля 2014 в 09:58, реферат
Гидравлическая система управления играет очень важную роль в обеспечении нормальной работы автоматической трансмиссии. Без гидравлической системы невозможна ни передача мощности, ни автоматическое управление трансмиссией. Рабочая жидкость обеспечивает смазку, переключение передач, охлаждение и соединение трансмиссии с двигателем. При отсутствии рабочей жидкости ни одна из этих функций не будет выполняться. Поэтому перед детальным изучением работы фрикционов и тормозов автоматической трансмиссии необходимо изложить основные положения гидравлики.
Механический привод управления клапаном-дросселем
Механическую связь дросселя с клапаном-дросселем можно осуществить двумя способами: с помощью рычагов и тяг (рис.6-37) и с помощью троса (рис.6-38).
Устройство клапана-дросселя с механическим приводом управления весьма похоже на устройство регулятора давления. Он также состоит из клапана и пружины, которая упирается в один из торцов клапана (рис.6-39). В корпусе клапана имеется внутренний канал, который позволяет подводить формируемое давление к другому торцу клапана. К клапану-дросселю подводится давление основной магистрали, из которого и формируется TV-давление.
В начальный момент плунжер клапана-дросселя под воздействием пружины находится в крайнем левом положении (рис.6-39). При этом отверстие, соединяющее клапан с основной магистралью, полностью открыто и ATF под давлением поступает в канал формирования TV-давления и под левый торец клапана-дросселя. При определенном давлении, определяемом жёсткостью и величиной предварительной деформации пружины, сила давления на левый торец клапана превысит усилие пружины, и он начнет перемещаться вправо. При этом поясок клапана перекроет отверстие основной магистрали и откроет сливное отверстие (рис.6-40). TV-давление начнет падать, и клапан под действием пружины вновь переместится влево, перекрывая при этом сливную и открывая основную магистраль. Давление в канале формирования TV-давления вновь начнет возрастать.
При таком варианте управления клапан-дроссель практически ничем не отличается от обычного регулятора давления. Отличительной особенностью его работы является то обстоятельство, что с помощью толкателя можно изменять величину предварительной деформации пружины. Толкатель с помощью механического привода жёстко соединен с педалью управления дроссельной заслонкой (рис.6-37 и 6-38), и его положение зависит от положения педали. При полностью отпущенной педали толкатель под действием все той же пружины занимает крайнее правое положение (рис.6-40). В этом случае пружина имеет минимальную величину предварительной деформации, поэтому в канале формирования TV-давления достаточно небольшого давления, чтобы переместить клапана-дроссель вправо. При нажатии на педаль управления дроссельной заслонкой перемещение педали с помощью механического привода передается толкателю. Он перемещается влево, увеличивая тем самым величину предварительной деформации пружины. Теперь для того, чтобы переместить клапана-дроссель вправо потребуется повышение TV-давления. Причем, чем больше перемещение педали управления дроссельной заслонкой, тем больше должно быть давление на выходе из клапана-дросселя. Так происходит формирование давления пропорционального степени открытия дроссельной заслонки. Причем, чем больше угол открытия дроссельной заслонки, тем выше TV-давление, и наоборот.
Управление клапаном дросселем с помощью модулятора
Во многих АКПП с чисто гидравлической системой управления для управления клапаном-дросселем используется модулятор. Модулятор представляет собой камеру, разделенную с помощью металлической или резиновой диафрагмы на две части (рис.6-41).
Левая часть камеры соединена с атмосферой, правая с помощью шланга с впускным коллектором двигателя. Пружина, которая в случае механического привода непосредственно действовала на клапан дросселя, размещена в этом случае в камере модулятора, соединенной с впускным коллектором двигателя. Клапан-дроссель соединен с диафрагмой модулятора с помощью толкателя.
Таким образом, слева на диафрагму модулятора действует сила атмосферного давления и сила TV-давления, которая создается на левом торце клапана-дросселя и передается на диафрагму с помощью толкателя. С права на диафрагму действует сила пружины и сила, создаваемая давлением во впускном коллекторе двигателя.
При работе двигателя на холостых оборотах разрежение во впускном коллекторе из-за, практически, полного перекрытия дроссельной заслонкой впускного отверстия, имеет максимальную величину (иными словами давление во впускном коллекторе намного меньше атмосферного давления). Поэтому сила атмосферного давления, действующая на диафрагму значительно больше силы давления во впускном коллекторе. Это приводит к тому, что пружина под действием силы давления сжимается и диафрагма перемещает толкатель и клапан-дроссель вправо (рис.6-42).
При таком положении клапана достаточно небольшого TV-давления, чтобы один поясок клапана перекрыл отверстие основной магистрали, а второй открыл отверстие сливной магистрали. Результатом этого является низкое значение TV-давления.
В случае открытия дроссельной заслонки разряжение во впускном коллекторе двигателя начинает уменьшаться (т.е. давление во впускном коллекторе возрастает) Поэтому сила давления, действующая на диафрагму модулятора, увеличивается и начинает частично уравновешивать силу атмосферного давления, действующую в противоположную сторону диафрагмы. В результате диафрагма вместе с толкателем перемещается влево, что приводит к такому же перемещению клапана-дросселя (рис.6-43). В этом случае для того, чтобы сместить клапан вправо, требуется уже более высокое TV-давление.
Таким образом, чем больше открыта дроссельная заслонка, тем меньше степень разряжения во впускном коллекторе и тем выше TV-давление.
Давление скоростного регулятора
Давление скоростного регулятора используется, наряду с TV-давлением, для определения моментов переключения передач.
Величина давления скоростного регулятора пропорциональна скорости движения автомобиля. Оно так же, как и давление клапана-дросселя, формируется из давления основной магистрали.
В коробках передач заднеприводных автомобилей скоростной регулятор обычно устанавливается на ведомом валу, а в АКПП переднеприводных автомобилей на промежуточном валу, где расположена ведущая шестерня главной передачи.
В трансмиссиях с электронным блоком управления скоростные регуляторы не используются, а определение скорости движения автомобиля осуществляется с помощью специальных датчиков, которые также устанавливаются на выходном валу АКПП.
Скоростные регуляторы, используемые в АКПП можно разделить на две группы:
Регуляторы с приводом от ведомого вала бывают двух типов -золотникового типа и шариковые. Для их привода используется специальное зубчатое зацепление, одна шестерня которого установлена на ведомом или промежуточном валу АКПП, а вторая на самом скоростном регуляторе.
Скоростной регулятор золотникового типа и приводом от ведомого вала АКПП
Скоростной регулятор золотникового типа состоит из клапана, двух типов грузов (первичного и вторичного) и пружин (рис.6-44). В начальный момент, когда автомобиль стоит на месте, скоростной регулятор, соединенный с помощью зубчатого зацепления с ведомым валом коробки передач, также неподвижен. Поэтому клапан скоростного регулятора под действием собственного веса находится в крайнем нижнем положении. При таком положении верхний поясок
клапана перекрывает отверстие, соединяющее регулятор с основной магистралью, а нижний поясок открывает сливную магистраль (рис.6-44а). В результате давление на выходе из скоростного регулятора равно нулю.
При движении автомобиля, скоростной регулятор вращаться с угловой скоростью, пропорциональной угловой скорости ведомого или промежуточного вала АКПП. При определенной скорости транспортного средства под действием центробежной силы грузы скоростного регулятора начинают расходиться и, преодолевая силу тяжести клапана, перемещают его вверх. Такое перемещение клапана приводит к открытию отверстия основной магистрали и закрытию отверстия сливного канала (рис.6-44б). В результате ATF из основной магистрали начинает поступать в канал формирования давления скоростного регулятора. Кроме того, по радиальному и осевому отверстиям трансмиссионная жидкость поступает в полость между корпусом скоростного регулятора и верхним торцом клапана (рис.6-44б). Давление жидкости на этот торец клапана создает силу, которая совместно с силой тяжести клапана противодействует центробежной силе, возникающей в грузах. При достижении определенного значения давления сумма сил, действующих на верхний торец клапана, станет больше центробежной силы грузов, и клапан начнет перемещаться вниз, перекрывая отверстие основной магистрали и открывая одновременно сливной канал. При этом давление скоростного регулятора начнет уменьшаться, что приведет уменьшению силы давления на верхний торец клапана. В какой-то момент действие центробежной силы опять станет больше силы веса и давления, и клапан вновь начнет подниматься. Так происходит формирование давления скоростного регулятора. В случае увеличения скорости движения автомобиля для того, чтобы клапан стал опускаться вниз, потребуется, очевидно, более высокое давление скоростного регулятора. В конечном счете, при определенной скорости автомобиля вес клапана регулятора совместно с давлением, действующим на верхний торец клапана, не смогут уравновесить центробежную силу грузов. В этом случае отверстие основной магистрали полностью откроется, и давление скоростного регулятора станет равным давлению в основной магистрали. При уменьшении скорости автомобиля уменьшится и центробежная сила, действующая на грузы скоростного регулятора, и, следовательно, должно уменьшиться давление скоростного регулятора.
Система грузов скоростного регулятора состоит из двух ступеней (первичной и вторичной) и двух пружин. Такое устройство регулятора позволяет получить зависимость давления скоростного регулятора (р) от скорости движения автомобиля (V) близкую к линейной (рис.6-45).
На первом этапе первичные (более тяжелые) и вторичные (легкие) грузы действуют на клапан скоростного регулятора совместно. Пружины удерживают вторичные грузы относительно первичных. Конструкция выполнена таким образом, что более легкие грузы через рычаги действуют непосредственно на клапан скоростного регулятора. При этом грузы двигаются совместно.
Начиная с определенных оборотов, скоростного регулятора центробежная сила, которая, как известно, зависит от квадрата частоты вращения, становится весьма большой. Так, например, двукратное увеличение оборотов увеличивает центробежную силу в четыре раза. Поэтому становится необходимо принять меры к снижению влияния центробежной силы на формируемое скоростным регулятором давление. Жёсткость пружин подобрана таким образом, что, примерно, на скорости движения 20 миль/ч (16 км/ч), центробежная сила первичных грузов превышает силу пружины, и они отклоняются в крайнее положение и упираются в ограничители (рис.6-44б). Первичные грузы в таком положении не воздействуют на вторичные и становятся неэффективными, а клапан скоростного регулятора на втором этапе уравновешивается центробежной силой только вторичных грузов и силой пружины.
Скоростной регулятор шарикового типа с приводом от ведомого вала АКПП
Скоростной регулятор шарикового типа состоит из полого вала, который приводится во вращение с помощью зубчатого зацепления ведомым валом АКПП, двух шариков, установленных в отверстиях вала, одной пружины и двух грузов различной массы, шарнирно закрепленных на валу (рис.6-46). К валу через жиклёр подводится давление основной магистрали, из которого во внутреннем канале вала формируется давление скоростного регулятора. Величина давления скоростного регулятора определяется величиной утечек через отверстия, в которых установлены шарики. Каждый из двух грузов имеет специальной формы захваты, с помощью которых они удерживают противоположно расположенный им шарики (рис.6-46).
При неподвижном автомобиле скоростной регулятор не вращается, поэтому грузы не оказывают ни какого воздействия на шарики, и вся жидкость, подводимая к валу из основной магистрали, сливается через незакрытые шариками отверстия в поддон. Давление скоростного регулятора равно нулю.
В случае движения с небольшой скоростью центробежная сила, действующая на вторичный (легкий) груз мала, и пружина не позволяет прижать его к седлу отверстия. В это время регулировка давления скоростного регулятора осуществляется только за счет первичного (более тяжелого) груза, который прижимает свой шарик к седлу с силой пропорциональной квадрату скорости движения автомобиля. При определенной скорости движения первичный груз полностью прижимает шарик к седлу отверстия, и утечки ATF через него уже не происходит. При этом центробежная сила, возникающая во вторичном грузе, достигает величины, способной преодолеть силу сопротивления пружины, и специальный захват этого груза начинает прижимать второй шарик к седлуотверстия вала. Теперь одно из двух отверстий вала полностью закрыто, и формирование давления скоростного регулятора осуществляется только за счет второго шарика. При высокой скорости движения автомобиля вторичный груз также полностью прижимает свой шарик к седлу отверстия, и давление скоростного регулятора становится равным давлению основной магистрали.
Давление подпитки гидротрансформатора
Часть ATF после регулятора давления поступает в основную магистраль, а другая его часть используется в системе подпитки гидротрансформатора. Для предотвращения в гидротрансформаторе кавитационных явлений желательно, чтобы жидкость в нем находилась под небольшим давлением. Поскольку давление основной магистрали для этой цели слишком велико, то давление подпитки гидротрансформатора чаще всего формируется дополнительным регулятором давления.
Давление управления блокировочной муфтой гидротрансформатора
Все современные трансмиссии имеют в своем составе только блокирующиеся гидротрансформаторы. Как правило, для блокировки гидротрансформатора используется фрикционная муфта, которая, как уже было показано, обеспечивает прямую механическую связь двигателя с коробкой передач. Это позволяет устранить скольжение в гидротрансформаторе и улучшить топливную экономичность автомобиля.
Включение блокировочной муфты гидротрансформатора возможно только при выполнении следующих условий:
В современных модификациях автоматических коробок передач используется не простое управление блокировочной муфтой гидротрансформатора, которое основано на принципе «Вкл»-«Выкл», а осуществляется управление процессом скольжения блокировочной муфты. При таком управлении муфтой достигается плавность ее включения. Естественно, что подобный способ управления блокировочной муфтой гидротрансформатора возможен только лишь в случае использования на автомобиле электронного блока управления.
Давление в системе охлаждения
Даже во время штатной работы трансмиссии с автоматической коробкой передач выделяется большое количество тепла, что приводит к необходимости охлаждения ATF, используемой в трансмиссии. В результате перегрева, трансмиссионная жидкость быстро теряет свои свойства, необходимые для нормальной работы трансмиссии. В результате снижается ресурс коробки передач и гидротрансформатора. Для охлаждения ATF постоянно пропускается через радиатор, куда она поступает из гидротрансформатора, поскольку именно в гидротрансформаторе выделяется большая часть тепла.