Автор работы: Пользователь скрыл имя, 03 Октября 2013 в 16:07, реферат
Автомобильным бензином называют нефтяную фракцию, представляющую смесь углеводородов, которая выкипает при температурах от 40 до 200 °С.
К бензинам предъявляются следующие требования:
обеспечение нормального и полного сгорания полученной смеси в двигателях (без возникновения детонации);
образование горючей смеси необходимого состава;
обеспечение бесперебойной подачи в систему питания;
отсутствие коррозионного воздействия на детали двигателя;
незначительное образование отложений в двигателе;
сохранение качеств при хранении и транспортировке.
1 Автомобильные бензины
1.1. Требования к качеству бензинов
Автомобильным бензином называют нефтяную фракцию, представляющую смесь углеводородов, которая выкипает при температурах от 40 до 200 °С.
К бензинам предъявляются следующие требования:
обеспечение нормального и полного сгорания полученной смеси в двигателях (без возникновения детонации);
образование горючей смеси необходимого состава;
обеспечение бесперебойной подачи в систему питания;
отсутствие коррозионного воздействия на детали двигателя;
незначительное образование отложений в двигателе;
сохранение качеств при хранении и транспортировке.
Каждое из перечисленных
требований выражается одним или
несколькими показателями, которые
устанавливаются
1.2. Свойства и показатели бензинов, влияющие на смесеобразование
Показателями бензинов, влияющими на смесеобразование, являются плотность, вязкость, поверхностное натяжение и испаряемость.
Плотность — отношение массы вещества к его объему. Плотность бензинов (от 690 до 810 кг/м3 при температуре 20 °С) наряду с поверхностным натяжением оказывает влияние на качество распыления топлива в карбюраторе, во впускном трубопроводе и цилиндрах двигателя вплоть до перехода его в парообразное состояние. Чем меньше плотность бензина, тем более мелкую структуру будет иметь распыленное топливо, что обеспечит лучшее перемешивание его с воздухом. Это, в свою очередь, улучшит полноту сгорания, т. е. повысит экономичность двигателя. Плотность бензина мало зависит от температуры; с понижением температуры на каждые 10 °С ее величина возрастает примерно на 1 %. Если значение плотности определено без учета температуры, то ее можно привести к значению плотности при температуре 20 ° С по формуле
Р20 - Р> + Y (У ~ 20),
где р, — плотность бензина при температуре /; у — температурная поправка; t — температура при измерении.
Плотность различных марок бензина примерно одинакова и определяется с помощью ареометра (рис. 1.2). Методы определения плотности нефтепродкутов определяет ГОСТ 3900—85. Ареометр погружают в стеклянный сосуд, заполненный бензином. По глубине погружения (верхняя шкала) определяют значение плотности, а по нижней шкале устанавливают температуру, при которой определялась плотность.
Вязкость — свойство жидкости оказывать сопротивление перемещению одной части относительно другой. Различают динамическую г| и кинематическую v вязкости. За единицу динамической вязкости принята вязкость такой жидкости, которая оказывает сопротивление силой в 1 Н, вызванным взаимным сдвигом двух слоев этой жидкости площадью 1 м2, находящихся на расстоянии 1 м друг от друга и перемещающихся со скоростью 1 м/с. Динамическая вязкость измеряется в Па • с.
С понижением температуры вязкость нефтяных топлив и их плотность повышаются. При понижении температуры уменьшится объемный расход бензина через жиклеры карбюратора, но при этом увеличится его массовый расход. Таким образом, влияние изменения вязкости и плотности бензина на работу жиклера противоположно, но в итоге при понижении температуры расход топлива через жиклеры уменьшится, что приведет к обеднению смеси.
В ГОСТах на нефтепродукты указывается кинематическая вязкость, которая равна отношению динамической вязкости вещества к его плотности р
v = л/Р-
Кинематическая вязкость измеряется в мм2/с. При температуре 20 °С вязкость бензина составляет от 0,5—0,7 мм2/с . С понижением температуры вязкость бензина повышается.
Поверхностное натяжение равно работе образования единицы площади (1 м2) поверхности жидкости при постоянной температуре и измеряется в Н/м. Для всех бензинов поверхностное натяжение одинаково и при температуре 20 °С равно 20—24 Н/м.
Испаряемость — это способность вещества к переходу из жидкого состояния в газообразное. От испаряемости зависит надежность поступления бензина из топливного бака в карбюратор и скорость образования топливно-воздушной смеси. Поэтому бензины должны обладать определенной испаряемостью, обеспечивающей легкий пуск двигателя, быстрый его прогрев, полное сгорание после прогрева, невозможность образования паровых пробок в топливной системе. Испаряемость бензина оценивается фракционным составом.
Фракционный состав бензинов — это содержание в них тех или иных фракций, выраженное в объемных или массовых соотношениях.
Фракционный состав топлив определяют на специальном приборе. Отмечают температуру начала перегонки /нп, конца перегонки /кп, температуры tl0, t50, t90, при которых перегоняется 10,
50 и 90 % бензина соответственно. На рис. 1.3 представлен график перегонки бензина, отражающий его фракционный состав, т. е. количество (q) перегоняемого топлива (в процентах) в зависимости от температуры перегонки (/).
В бензинах различают три основные фракции: пусковую, рабочую, концевую. Пусковая фракция представляет собой первые 10 % перегонки бензина. Чем ниже температура выкипания первых 10 % топлива, тем легче будет осуществлен пуск холодного двигателя. Однако при содержании особо низких фракций возникает опасность преждевременного испарения бензина и образование паровых пробок. По температуре /10 можно определить минимальную температуру окружающей среды, при которой возможен пуск двигателя:
toc = 0,5/10 - 50,5.
Температура выкипания 50 % бензина характеризует однородность состава смеси по отдельным цилиндрам, продолжительность и приемистость прогрева двигателя.
При снижении /50 сокращается время прогрева, увеличивается приемистость автомобиля и срок службы двигателя. Повышение /50 приводит к снижению ресурса двигателя, особенно при низких температурах окружающей среды.
Рис. 1.3. График перегонки бензина
Показатели t90 и ^ определяют содержание в бензинах тяжелых трудноиспаряемых фракций. Чем выше /90 и /кп, тем вероятнее неполное испарение бензина и неполное его сгорание в цилиндрах, а это увеличивает расход бензина. Кроме того, несгоревшие частицы оседают на стенках цилиндра и смывают с них масло.
Давление насыщенных паров
бензина характеризует
Свойства и показатели бензинов, влияющие на подачу топлива
К показателям бензинов, влияющим на подачу топлива кроме давления насыщенных паров относятся показатели содержания воды и механических примесей.
Механическими примесями являются твердые вещества, образующие осадок или находящиеся во взвешенном состоянии. Это может быть пыль, технологическая грязь, продукты коррозии, разрушения шлангов, прокладок, фильтров, окисления и разложения углеводородов, которые могут привести к засорению жиклеров в карбюраторе, распылителей форсунок и т. д., а также стать причиной повышенного износа деталей двигателя. Поэтому бензины и дизельные топлива не должны содержать механические примеси.
Наличие механических примесей определяется визуально путем осмотра пробы на свету в стеклянной емкости. В топливе не должно быть частиц, видимых невооруженным глазом.
Наличие воды в топливе вызывает коррозию деталей и осмо- ление непредельных углеводородов, содержащихся в бензине. Промышленное топливо практически не содержит воды. Однако зимой вода замерзает в топливных коммуникациях и может попасть в топливо при транспортировке, хранении и заправке. Поэтому топливо до заправки должно отстаиваться в складской таре, а при заправке фильтроваться. Наличие в топливе воды определяется также визуально.
Свойства и показатели бензинов, влияющие на процесс сгорания
Различают нормальное, детонационное и калильное сгорание рабочей смеси.
Сгорание смеси считается нормальным, если воспламенение топлива происходит от свечи зажигания, при этом оно полностью сгорает со средней скоростью распространения фронта пламени 15—25 м/с. Такое сгорание обеспечивает полное тепловыделение и плавное увеличение давления в цилиндрах.
Детонационным сгоранием
называется такое сгорание рабочей
смеси, при котором кроме
Переход от нормального сгорания к детонационному обусловлен химическим составом топлива. Существует несколько теорий, объясняющих сущность детонационного сгорания, из них наиболее признанной является теория, по которой считается, что первыми продуктами взаимодействия углеводородов с кислородом являются перекиси и гидроперекиси. Они обладают большой избыточной энергией и при определенных условиях могут накапливаться с выделением большого количества тепла и активных частиц. При этом отмечено, что нормальные углеводороды легко образуют перекисные соединения, а разветвленные устойчивы к их образованию.
Так как каждая молекула гидроперекиси дает начало нескольким цепям, то скорость окисления резко возрастает. Таким образом, в конце такта сжатия при воспламенении смеси от свечи зажигания около нее формируется очаг пламени (рис. 1.4).
Фронт пламени Несгоревшая
Очаги холодно-пламенного Самовоспламеняющаяся окисления смесь
Отраженные волны
Рис. 1.4. Этапы детонационного сгорания в рабочей смеси: а — зажигание смеси от свечи зажигания; б — формирование очага горения; в — нормальное движение фронта пламени; г — образование очагов холодно-пламенного окисления в несгоревшей смеси; д — образование детонационной волны; е — движение отраженных волн
Образовавшийся фронт
пламенного горения устремляется от
свечи зажигания в
Если концентрация перекисей
в несгоревшей части рабочей
смеси окажется ниже критической, то
фронт пламени горения без
существенного изменения
Так как рабочая смесь уже подготовлена к горению (много перекисей), то она сгорает с большой скоростью и резким повышением давления, в результате чего формируется ударная волна, двигающаяся по камере сгорания со сверхзвуковой скоростью. Мгновенно воспламеняются соседние слои рабочей смеси, а сама ударная волна оказывается совмещенной с фронтом пламени, при этом образуется детонационная волна. Избавиться от этого вредного явления можно подбором для каждой марки двигателя бензина с соответствующей детонационной стойкостью. С другой стороны, известно, что самый простой способ форсирования мощности двигателя путем увеличения степени сжатия ограничен именно детонационной стойкостью бензинов.
Удар детонационной волны о стенки камеры сгорания вызывает отраженные волны, вибрацию стенок и порождает звонкие металлические стуки, характерные для детонации. Слои рабочей смеси, прилегающие к стенкам цилиндра, подвергаются сильному сжатию детонационной волной, в результате чего увеличивается их теплопроводность и усиливается отдача тепла стенкам, двигатель перегревается и его работа становится жесткой.
Калильное сгорание — это воспламенение рабочей смеси от перегретых деталей и нагара в камере сгорания, когда при выключении зажигания сгорание смеси не прекращается, а она воспламеняется на такте очередного сжатия. При этом процесс сгорания и расширения смеси может наступить до завершения такта сжатия с последствиями, аналогичными для детонационного сгорания.
Детонационная стойкость оценивается октановым числом.
На рис. 1.5 представлена развернутая индикаторная диаграмма, т. е. зависимость изменения давления Р в цилиндре двигателя от угла поворота коленчатого вала фпв, при нормальном и детонационном сгорании смеси.
Октановое число — условный показатель антидетонационной стойкости бензина, численно равный процентному содержанию изооктана С8Н18, октановое число которого принято за 100, в его смеси с н-гептаном С7Н16, октановое число которого равно 0, эквивалентной по детонационной стойкости испытываемому бензину. Смеси изооктана и н-гептана различных соотношений будут иметь детонационную стойкость от 0 до 100. Например, октановое число бензина равно 80. Это значит, что данный бензин по детонационной стойкости эквивалентен смеси изооктана и н-гептана, в которой изооктана 80 %.
Существуют два метода определения октанового числа: моторный и исследовательский.
Моторным методом определяют октановое число на установке УИТ-65 (рис. 1.6), позволяющей изменять степень сжатия от 4 до 9, где сравнивают детонационную стойкость исследуемого бензина с эталонными образцами при температуре горючей смеси 150 °С и частоте вращения 900 мин"1.
Исследовательским способом
детонационную стойкость
Рис. 1.5. Индикаторная диаграмма: 1 — нормальное сгорание; 2 — детонационное сгорание; ВМТ — верхняя мертвая точка
Так как определение детонационной стойкости по моторному методу проходит в более жестких условиях, то результат будет несколько ниже, чем он был бы получен при определении по исследовательскому методу (табл. 1.1). В обоих случаях после прогрева двигателя постепенно увеличивается степень сжатия до появления детонации определенной стандартной интенсивности, определяемой по шкале указа