Автор работы: Пользователь скрыл имя, 19 Октября 2014 в 21:22, контрольная работа
Воздухопроницаемостью называется свойство строительных материалов и ограждающих конструкций пропускать сквозь себя поток воздуха, воздухопроницаемостью считают также расход воздуха в кг, который проходит через 1м2 ограждения за час G, кг/(м2.ч).
Представляет собой массовый расход воздуха в единицу времени через единицу площади поверхности ограждающей конструкции (слоя ветроизоляции) при разнице давлений воздуха на поверхности конструкции Арв (Па): GB = (1/RB) Арв, где RB (м2 час Па/кг) - сопротивление воздухопроницанию, а обратная величина (l/RB)(Kr/M2 час Па) - коэффициент воздухопроницаемости ограждающей конструкции. Воздухопроницаемость характеризует не материал, а слой материала или ограждающую конструкцию (слой изоляции) определённой толщины.
Ослабление вибрации на пути ее распространения осуществляется тремя основными методами ‑ виброизоляцией, виброгашением и вибропоглощением. Сущность виброизоляции заключается в том, что между источником вибрации и защищаемым объектом помещают упругие элементы ‑ амортизаторы, препятствующие передаче колебаний. Виброгашение осуществляется за счет воздействия на защищаемый объект присоединенных к нему дополнительных колебательных систем с определенной массой (самостоятельный фундамент). Вибропоглощение заключается в использовании наносимых на вибрирующие поверхности специальных покрытий (пластмасса, фетр, войлок, резина, пенопласт), деформация которых трансформирует колебательную энергию в тепловую.
Борьба с производственным шумом осуществляется методами, обозначенными четырьмя группами:
устранение причин шума в источнике его образования;
звукоизоляция;
звукопоглощение;
применение организационно-технических мероприятий.
Наиболее действенным способом борьбы с шумом является уменьшение его в источнике образования путем применения технологических и конструктивных мер, организацией правильной наладки и эксплуатации оборудования.
Для защиты человека от шумов в настоящее время имеется достаточно большой ассортимент противошумов: это наушники, вкладыши, наушники скреплением на защитных касках, шлемы. Однако чтобы средства индивидуальной защиты не превратились просто в средства защиты, необходимо, чтобы человек мог выбирать для себя конкретное средство индивидуальной защиты. Эффективность всех противошумов – как противошумных наушников, так и противошумных вкладышей – максимальна в области высоких частот, наиболее вредных и неприятных для человека.
Нетрадиционные источники тепла. ВЭР.
Тепловые, энергетические и экономические характеристики тепловых насосов тесно взаимоувязаны с характеристиками источников тепла.
Идеальный источник тепла должен давать стабильную высокую температуру в течение отопительного сезона, быть изобильным, не быть коррозийным и загрязняющим, иметь благоприятные теплофизические характеристики, не требовать существенных инвестиций и расходов по обслуживанию.
Наружный и отводимый воздух, почва и подпочвенная вода представляют источники тепла, широко используемые в небольших системах на базе тепловых насосов, тогда как морская, озерная и речная вода, геотермические источники и грунтовые воды применяются для систем большой мощности.
Наружный воздух, будучи совершенно бесплатным и общедоступным, является наиболее предпочитаемым источником тепла.
Нетрадиционными источниками энергии и тепла являются солнце, ветер, океанические приливы, тепло земных глубин. Эти варианты получения энергии и тепла как дополнительной используются в последнее время всё чаще. Многие учёные убеждены, что к 2030—2050 гг. нетрадиционные (возобновляемые) источники энергии ,тепла будут основными, а традиционные потеряют своё значение. Так же для источников тепла можно использовать солнечную энергию, приведем несколько вариантов ее использования: При физических способах усвоения солнечной энергии используют гальванические батареи, которые поглощают её и преобразуют в тепловую или электрическую энергию, либо системы зеркал, отражающих лучи солнца и направляющих их на заполненные маслом трубы, которые концентрируют солнечное тепло. Использование солнечных коллекторов может частично решить экологическую проблему и использовать энергию для бытовых нужд (подогрев воды, обогрев теплиц и т. д.). Наиболее успешно солнечная энергетика развивается в Японии и Израиле, где за её счёт почти полностью покрывается потребность в отоплении жилья и подогреве воды для бытовых нужд. Солнечную энергию можно использовать в любом уголке земли.
Вторичные энергетические
В настоящее время и в ближайшей перспективе ещё будут существовать технологические процессы с материальными и энергетическими отходами. На технологический процесс расходуется определённое количество топлива, электрической и тепловой энергии. Кроме того, сами технологические процессы протекают с выделением различных энергетических ресурсов – теплоносителей, горючих продуктов, газов и жидкостей с избыточным давлением. Однако не всё количество этой энергии используется в технологическом процессе или агрегате; такие неиспользуемые в процессе энергетические отходы называют вторичными энергетическими ресурсами (ВЭР).
Количество образующихся вторичных энергетических ресурсов достаточно велико. Поэтому полезное их использование – одно из важнейших направлений экономии энергетических ресурсов. Утилизация этих ресурсов связана с определёнными затратами, в том числе и капитальными, поэтому возникает необходимость экономической оценки целесообразности такой утилизации.
Под ВЭР понимают энергетический потенциал продукции, отходов, побочных и промежуточных продуктов, образующихся при технологических процессах, в агрегатах и установках, который не используется в самом агрегате, но может быть частично или полностью использоваться для энергосбережения других агрегатов.
Классификация вторичных энергетических ресурсов промышленности.
ВЭР промышленности делятся на три основные группы:
– горючие,
– тепловые,
– избыточного давления.
Горючие (топливные) ВЭР – химическая энергия отходов технологических процессов химической и термохимической переработки сырья, а именно это: – побочные горючие газы плавильных печей (доменный газ, колошниковый, шахтных печей и вагранок, конверторный и т.д.),
– горючие отходы процессов химической и термохимической переработки углеродистого сырья (синтез, отходы электродного производства, горючие газы при получении исходного сырья для пластмасс, каучука и т.д.),
– твёрдые и жидкие топливные отходы, не используемые (не пригодные) для дальнейшего технологической переработки,
– отходы деревообработки, щелока целлюлозно-бумажного производства.
Горючие ВЭР используются в основном как топливо и немного (5%) на не топливные нужды (преимущественно в качестве сырья).
Тепловые ВЭР – это тепло отходящих газов при сжигании топлива, тепло воды или воздуха, использованных для охлаждения технологических агрегатов и установок, теплоотходов производства, например, горячих металлургических шлаков.
Одним из весьма перспективных направлений
использования тепла слабо нагретых вод
является применение так называемых тепловых
насосов, работающих по тому же принципу,
что и компрессорный агрегат в домашнем
холодильнике. Тепловой насос отбирает
тепло от сбросной воды и аккумулирует
тепловую энергию при температуре около
90 °С, иными словами, эта энергия становится
пригодной для использования в системах
отопления и вентиляции.
Особенно значительны объемы тепловых вторичных ресурсов в чёрной металлургии, в газовой, нефтеперерабатывающей и нефтехимической промышленности.
ВЭР избыточного давления (напора) – это потенциальная энергия газов, жидкостей и сыпучих тел, покидающих технологические агрегаты с избыточным давлением (напором), которое необходимо снижать перед последующей ступенью их использования.
Гидравлические испытания систем теплоснабжения.
Гидравлические испытания трубопроводов систем отопления и теплоснабжения должно производиться при отключенных котлах и расширительных сосудах гидростатическим методом давлением, равным 1,5 рабочего давления, но не менее 0,2 МПа (2 кгс/см2) в самой нижней точке системы.
Система признается выдержавшей испытание, если в течение 5 мин нахождения ее под пробным давлением падение давления не превысит 0,02 МПа (0,2 кгс/см2) и отсутствуют течи в сварных швах, трубах, резьбовых соединениях, арматуре, отопительных приборах и оборудовании.
Величина пробного давления при гидростатическом методе испытания для систем отопления и теплоснабжения, присоединенных к теплоцентралям, не должна превышать предельного пробного давления для установленных в системе отопительных приборов и отопительно-вентиляционного оборудования.
Манометрические гидравлические испытания трубопроводов систем отопления и теплоснабжения соответствуют манометрическим испытаниям систем внутреннего холодного и горячего водоснабжения и производятся в той же последовательности.
Системы панельного отопления должны быть испытаны, как правило, гидростатическим методом.Манометрическое испытание допускается производить при отрицательной температуре наружного воздуха.
Гидростатическое испытание систем панельного отопления должно производиться (до заделки монтажных окон) давлением 1 МПа (10кгс/см2) в течение 15 мин, при этом падение давлении допускается не более 0,01 МПа (0,1 кгс/см2).
Для систем панельного отопления, совмещенных с отопительными приборами, величина пробного давления не должна превышать предельного пробного давления для установленных в системе отопительных приборов.
Величина пробного давления систем панельного отопления, паровых систем отопления и теплоснабжения при манометрических испытаниях должна составлять 0,1 МПа (1 кгс/см2). Продолжительность испытания -5 мин. Падение давления должно быть не более 0,01 МПа (0,1 кгс/см2).
Система признается выдержавшей испытание давлением, если в течение 5 мин нахождения ее под пробным давлением падение давления не превысит 0,02 МПа (0,2 кгс/см2] и отсутствуют течи в сварных швах, трубах, резьбовых соединениях, арматуре, отопительных приборах.
montagtrub.ru›gidravlicheskie-
energy-saved.ru›lektsii-
Энергетические ресурсы мира. Под редакцией Непорожнего П.С., Попкова В.И. — М.: Энергоатомиздат. 2005 г.
Аркуша М.И. Элективный курс «Энергетика и окружающая среда»
Калашников Н.П. «Альтернативные источники энергии» М.: Знание 2008 г. Богословский В.Н. Отопление и вентиляция: Учебник для вузов/ В.Н.Богословский.
В.П. Щеглов, Н.Н. Разумов. – 2-е изд., перераб. и доп. – М.: Стройиздат, 1980. – 295 с., ил.
Содержание……………………………………………………
Вопрос №8…………………………………………………………………………
Вопрос №18………………………………………………………………………
Вопрос №28………………………………………………………………………
Вопрос №38………………………………………………………………………
Вопрос №48………………………………………………………………………
Вопрос №58………………………………………………………………………
Список литературы……………………………………………………
Информация о работе Воздухопроницаемость ограждений, сопротивление воздухопроницанию