Трансформаторы напряжения

Автор работы: Пользователь скрыл имя, 06 Сентября 2012 в 12:16, реферат

Краткое описание

Рассматриваются основные сведения о трансформаторах напряжения. Описаны устройство и принцип действия трансформаторов напряжения, а также их назначение и классификация. Приведены основные параметры и характеристики трансформаторов напряжения.

Содержание

ВВЕДЕНИЕ 4
1. ОБЩИЕ СВЕДЕНИЯ 5
2. КОНСТРУКЦИИ ТРАНСФОРМАТОРОВ НАПРЯЖЕНИЯ 10
2.1. Общие положения 10
2.2. Сухие трансформаторы напряжения 10
2.3. Масляные трансформаторы напряжения 11
2.4. Каскадные трансформаторы напряжения 14
2.5. Емкостные трансформаторы напряжения 17
3. ВЫБОР ТРАНСФОРМАТОРОВ НАПРЯЖЕНИЯ 19
ЗАКЛЮЧЕНИЕ 20
БИБЛИОГРАФИЧЕСКИЙ СПИСОК 21

Прикрепленные файлы: 1 файл

РЕФЕРАТ ТРАНСФОРМАТОРЫ НАПРЯЖЕНИЯ.doc

— 215.00 Кб (Скачать документ)

       Трансформаторы  напряжения НКФ-110 имеют вес 1360, кг. Трансформаторы же типа НИОМ-110 весили 3895, кг, что в 2.9 раза больше современных трансформаторов напряжения каскадного типа.

       Трансформаторы  напряжения на 220, кВ состоят из двух блоков, установленных один над другим. Они имеют два магнитопровода и четыре ступени каскадной обмотки. Трансформаторы напряжения НКФ-330 (см. рис.4) и НКФ-500 соответственно имеют три и четыре блока, т.е. шесть и восемь ступеней обмотки высшего напряжения. Чем больше каскадов обмотки, тем больше их активное и реактивное сопротивления, что приводит к возрастанию погрешности. Поэтому трансформаторы типа НКФ-330 и НКФ-500 выпускаются только в классах точности 1 и 3.

       Следует отметить, что для контроля состояния  изоляции нельзя применять трехфазные трехстержневые трансформаторы напряжения.

       В нормальных условиях работы обмотки  трансформатора находятся под фазным напряжением. По обмоткам протекают фазные токи. Они создают магнитные потоки, замыкающиеся в магнитопроводе. Ввиду незначительного сопротивления магнитопровода намагничивающие токи в фазах малы. Если возникают однофазные замыкания на землю, допустим, фазы А, обмотка этой фазы оказывается под напряжением, близким к нулю, а обмотки двух других фаз под напряжением в раз большем фазных. Чтобы осуществить контроль изоляции, нейтраль первичной обмотки трансформатора заземляют. Поэтому замыкание на землю фазы А сети вызовет закорачивание первичной обмотки фазы А трансформатора. Создается несимметричный режим работы, и, как следствие, в электромагнитной системе трансформатора начинают действовать токи нулевой последовательности IАО, IВО, IСО равные по величине и совпадающие по фазе. Токи вызывают в сердечниках магнитопровода магнитные потоки нулевой последовательности ФАО, ФВО, ФСО. Так как токи равны по величине и совпадают по фазе, то они не могут замыкаться через стержни соседних фаз магнитопровода и вынуждены замыкаться через воздух и частично через стальной кожух магнитопровода. Магнитное сопротивление воздуха во много раз больше магнитного сопротивления стального магнитопровода. Для проведения магнитного потока через воздух необходима значительная намагничивающая сила. Поэтому токи IАО, IВО, IСО значительны по величине, а следовательно, и полные токи, протекающие по обмоткам трансформатора, будут относительно большими. Обычно эти токи превышают номинальные в несколько раз. Хотя таки и большие, но они не вызывают перегорания стоящих перед трансформатором напряжения плавких вставок предохранителей. Длительное протекание этих токов неизбежно приведет к перегреву обмоток и повреждению трансформатора. Поэтому трехфазные трехстержневые трансформаторы напряжения нельзя использовать для контроля изоляции. Во избежание ошибочного заземления

 

Рис. 4. Трансформатор напряжения НКФ-330

 

нейтрали  эти трансформаторы изготавливаются  без выведенных наружу нейтралей обмоток высшего напряжения.

       В трехфазных пятистержневых трансформаторах подобного перегрева обмоток и кожуха не происходит. Магнитные потоки, если они возникают, замыкаются через дополнительные крайние стержни магнитопровода. Аналогичное явление наблюдается и в однофазных трансформаторах напряжения, имеющих раздельные магнитные системы для каждой фазы.  
 

       2.5. Емкостные трансформаторы  напряжения 

       Чем выше напряжение, тем сложнее конструкция  трансформатора напряжения. В установках 500, кВ и выше применяются трансформаторные устройства с емкостным отбором мощности. Делитель практически представляет два конденсатора С1 и С2. Напряжение на конденсаторах делится обратно пропорционально величинам их емкостей. Емкость конденсатора С2  примерно на порядок больше емкости конденсатора С1. Поэтому ток текущий по цепочке, будет определяться величиной емкости конденсатора С1. Напряжение снимается с С2. Величина напряжения 10...15, кВ. Оно подается на трансформатор, имеющий две вторичные обмотки. Обмотки соединяются по такой же схеме, как и у трансформаторов НКФ или ЗНОМ. Для увеличения точности измерения в цепь первичной обмотки трансформатора включается дроссель. Если трансформатор включить на конденсатор С2 без дросселя, то с увеличением нагрузки уменьшится входное сопротивление трансформатора. Напряжение начнет уменьшаться. Следовательно, напряжение на нагрузке зависит от ее величины. Поэтому дроссель настраивается на резонанс с емкостью С1 + С2 при частоте f=50 Гц. В результате выходное напряжение будет мало зависеть от величины нагрузки. Такое устройство получило название емкостного трансформатора напряжения НДЕ. При соответствующем выборе всех элементов настройки схемы устройства НДЕ могут быть выполнены на класс точности 0.5 и выше.

       НДЕ  фазное напряжение между конденсаторами последовательной цепи распределяется пропорционально их емкостным сопротивлениям. К последнему конденсатору со стороны заземления параллельно части фазного напряжения подключается ИТН.

       В конструкциях баковых выключателей в качестве НДЕ используется конденсаторный ввод ВН, к обкладкам которого со стороны заземления подключается навешиваемый снаружи на аппарат ПИН (прибор измерения напряжения). 

       Для установок 750 и 1150 кВ применяются трансформаторы НДЕ-750 и НДЕ-1150.

 

        3. ВЫБОР ТРАНСФОРМАТОРОВ НАПРЯЖЕНИЯ 

       Трансформаторы  напряжения выбираются по номинальным параметрам (напряжению и току), классу точности и нагрузке, которая определяется мощностью электроизмерительных приборов и реле, подключенных к трансформатору. При этом необходимо учитывать конструктивные особенности и схемы соединения обмоток трансформатора. Номинальное напряжение трансформатора UН должно быть больше или равно напряжению установки, т.е. SУ£UН. Номинальная мощность должна быть больше или равна активной и реактивной мощности, потребляемой приборами и реле: 

            , 

где PS=SПРcosj - суммарная активная мощность, потребляемая приборами и реле;

      QS=PПРtgj - реактивная суммарная мощность.

       Обычно  значения мощности, потребляемой приборами  и реле, и их cosj даются в справочниках.

       Для однофазных трансформаторов, соединенных в звезду, SН равна суммарной мощности всех трех фаз. Кода обмотки трансформаторов соединены по схеме открытого треугольника SН принимают равной двойной мощности одного трансформатора. Если вторичная нагрузки S2S превышает номинальную мощность в выбранном классе точности, то устанавливают второй трансформатор напряжения и часть приборов присоединяют к нему. Сечения проводов в цепях трансформаторов напряжения выбирают по допустимой потере напряжения.

 

        ЗАКЛЮЧЕНИЕ 

       Трансформаторы  напряжения применяются в цепях переменного тока электроустановок при высоких напряжениях и больших токах, когда непосредственное включение контрольно-измерительных приборов, реле и приборов автоматики в  первичные цепи технически невозможно, нерационально или недопустимо по условиям безопасности.

       Класс точности трансформаторов напряжения характеризуется максимально допустимыми погрешностью напряжения и угловой погрешностью при определенном режиме работы трансформатора.

       Трансформаторы напряжения сохраняют класс точности при изменении первичного напряжения от 80 до 120% номинального.

       Сухие трансформаторы напряжения применяются только в сухих закрытых распределительных устройствах. Основными достоинствами таких трансформаторов служат: малый вес и габариты, пожаро- и взрывобезопасность.

       Трехобмоточные трансформаторы серий ЗНОМ, ЗНОЛТ и НТМИ предназначены для сетей с изолированной нейтралью, серии НКФ (кроме НКФ-110-58) – с заземленной нейтралью.Широко применяются трансформаторы  напряжения серии ЗНОЛ-6. Класс точности этих трансформаторов 0.2, небольшая масса, устанавливаются в  любом положении. Обычно  используются в комплектных распределительных устройствах  и  комплектных  токопроводах  вместо масляных трансформаторов.

       Каскадные трансформаторы напряжения выпускаются типа НКФ на напряжение 110...500, кВ. Это однофазные каскадные трансформаторы в фарфоровом кожухе. Трансформаторы напряжения НКФ-110 имеют вес 1360, кг. Трансформаторы же типа НИОМ-110 весили 3895, кг, что в 2.9 раза больше современных трансформаторов напряжения каскадного типа.

 

        БИБЛИОГРАФИЧЕСКИЙ СПИСОК 

       1. Александров А.Н. Электрические  аппараты высокого напряжения. Л.: Энергоатомиздат, 1989. 343 с.

       2. Чунихин А.А., Жаворонков М.А. Аппараты  высокого напряжения. М.: Энергоатомиздат, 1985. 432 с.

       3. Шпиганович А.Н., Огарков Н.М., Шпиганович А.А. Высоковольтное электрооборудование распределительных устройств. ЛГТУ. Липецк, 1998. 80 с.


Информация о работе Трансформаторы напряжения