Автор работы: Пользователь скрыл имя, 04 Августа 2014 в 13:37, курсовая работа
Теплообменными аппаратами (теплообменниками) принято называть устройства, предназначенные для передачи тепла от одних тел к другим. В теплообменных аппаратах могут происходить различные тепловые процессы: изменение температуры, испарение, кипение, конденсация, расплавление, затвердевание и, наконец, более сложные, комбинированные процессы. Количество тел, участвующих в этих процессах, может быть больше двух, а именно: тепло может передаваться от одного тела к нескольким другим телам или, наоборот, от нескольких тел к одному. Эти тела, отдающие или воспринимающие тепло, принято называть теплоносителями.
Задание на курсовое проектирование…………………………………………….3
1. Анализ возможных схем теплообменников, учёт их конструктивных особенностей ……………………………………………………………….……….4
1.1 Классификация теплообменных аппаратов. Теплоносители……………..4
1.2 Конструкции трубчатых, пластинчатых и спиральных аппаратов поверхностного типа …………………………………………………………………8
1.3 Выбор конструктивной схемы аппарата…………………………………….17
2 Расчетная часть…………………………………………………………………..18
2.1 Конструктивный расчёт теплообменника………………………………….18
2.2 Тепловой расчёт теплообменника …………………………………………..21
Вывод………………………………………………………………………………..23
Приложения………………………………………………………………………….24
Список использованной литературы………………………………………………27
По дисциплине «Гидравлика и теплотехника»
на тему: «Тепловой и конструктивный расчёт секционного водо-водяного подогревателя теплосети»
ПГТА 2.280202.20 ПЗ
Работа защищена с оценкой_____
Пенза 2012
Содержание
Задание
на курсовое проектирование…………………………………………
1. Анализ возможных схем теплообменников, учёт их конструктивных особенностей ……………………………………………………………….……….4
1.1 Классификация теплообменных аппаратов. Теплоносители……………..4
1.2 Конструкции трубчатых, пластинчатых и спиральных аппаратов поверхностного типа …………………………………………………………………8
1.3 Выбор конструктивной схемы аппарата…………………………………….17
2 Расчетная
часть…………………………………………………………………
2.1 Конструктивный расчёт теплообменника………………………………….18
2.2 Тепловой расчёт теплообменника …………………………………………..21
Вывод…………………………………………………………………
Приложения……………………………………………………
Список использованной литературы………………………………………………27
УТВЕРЖДАЮ
Заведующий кафедрой БТБ
______________ Таранцева К.Р.
«__» _______________2012 г.
Задание на курсовое проектирование по дисциплине:
«Гидравлика и теплотехника»
Студенту группы
1. Тема: Конструктивный и тепловой
расчёт секционного водо-
2. Целевая установка: На основе
анализа возможных схем
3. Исходные данные:
- схема движения – прямоток;
- производительность, Q =3 , Дж/ с;
- температура греющей воды на входе, t1′= 145°С
- температура греющей воды на выходе, t1¢¢ =120°С;
- температура нагревающей воды на входе, t2¢= 70 °C;
- температура нагревающей воды на выходе, t2² =100 °C;
- поверхность нагрева (латунные трубки), dвн/ dн =16 / 18 мм;
- теплопроводность материала, lст= 105Вт/ м*К;
- толщина накипи, dнак = 0,2 мм;
- теплопроводность накипи, lнак=3,49 Вт/ м*К
- КПД , h = 0,97
4. Содержание курсовой работы (перечень вопросов):
-классификация теплообменных
-анализ аппаратов;
-выбор конструктивной схемы аппарата, материалов;
-конструктивный и тепловой
5.К защите представить:
-пояснительную записку (объём 20-25 листов);
-рабочий чертёж, выполненный на отдельном листе по ГОСТу;
-таблицы (графики).
6. Список используемой
Руководитель курсового проекта
«__ » __________ 2012 г.____________________________
Задание получил студент группы
«__ » __________ 2012 г.____________________________
1.
Анализ возможных схем
1.1
Классификация теплообменных
Теплообменными аппаратами (теплообменниками) принято называть устройства, предназначенные для передачи тепла от одних тел к другим. В теплообменных аппаратах могут происходить различные тепловые процессы: изменение температуры, испарение, кипение, конденсация, расплавление, затвердевание и, наконец, более сложные, комбинированные процессы. Количество тел, участвующих в этих процессах, может быть больше двух, а именно: тепло может передаваться от одного тела к нескольким другим телам или, наоборот, от нескольких тел к одному. Эти тела, отдающие или воспринимающие тепло, принято называть теплоносителями.
Классификация теплообменных аппаратов. Теплообменные аппараты имеют большое распространение во всех отраслях промышленности и широко применяются в теплосиловых установках. В зависимости от назначения теплообменные аппараты называются подогревателями, конденсаторами, испарителями, паропреобразователями и т. д.
По принципу действия теплообменные аппараты делятся на поверхностные и смесительные.
В поверхностных аппаратах теплоносители разделены твердыми теплопроводными стенками, через которые происходит теплообмен между теплоносителями. Та часть поверхности стенок, через которую передается тепло, называется поверхностью нагрева.
В свою очередь поверхностные теплообменные аппараты делятся на рекуперативные и регенеративные.
Если теплообмен между теплоносителями происходит через разделительные стенки, то теплообменник называют рекуперативным. В аппаратах этого типа в каждой точке разделительной стенки тепловой поток сохраняет постоянное направление.
Если же два или больше теплоносителей попеременно соприкасаются с одной и той же поверхностью нагрева, то теплообменный аппарат называют регенеративным. В период соприкосновения с одним из теплоносителей стенки аппарата получают тепло и аккумулируют его; в следующий период соприкосновения другого теплоносителя с той же поверхностью стенок аккумулированное тепло передается теплоносителю. Направление теплового потока во втором периоде изменяется на противоположное.[1].
В большинстве рекуперативных аппаратов осуществляется непрерывная передача тепла через стенку от одного теплоносителя к другому. Эти аппараты, как правило, являются аппаратами непрерывного действия. Рекуперативные аппараты, в которых производится периодический нагрев или охлаждение одного из теплоносителей, относят к аппаратам периодического действия.
Регенеративные теплообменники в большинстве случаев являются аппаратами периодического действия; в них разные теплоносители поступают в различные периоды времени. Непрерывная работа осуществляется в таких аппаратах лишь в том случае, если они снабжены движущимися стенками или насадками, попеременно соприкасающимися с потоками разных теплоносителей и непрерывно переносящими тепло из одного потока в другой.
В смесительных теплообменных аппаратах тепло- и массообмен осуществляется путем непосредственного контакта и смешения жидких и газообразных теплоносителей.
В зависимости от назначения производственных процессов в качестве теплоносителей могут применяться самые различные газообразные, жидкие и твердые тела.
Водяной пар, как греющий теплоноситель, в теплообменных аппаратах получил большое распространение благодаря ряду его достоинств. Его можно транспортировать по трубопроводам на значительные расстояния (до нескольких сотен метров). Интенсивная теплоотдача от конденсирующегося водяного пара способствует уменьшению поверхности теплообмена. Конденсация водяного пара сопровождается большим уменьшением его энтальпии; благодаря этому для передачи сравнительно больших количеств тепла требуются небольшие весовые количества пара. Постоянство температуры конденсации при заданном давлении облегчает поддержание постоянства режима и регулирование процесса в аппаратах.
Основным недостатком водяного пара является неизбежное и значительное повышение давления с ростом температуры. Например, при давлении 0,981 • 105 Па (1 кгс/см2) температура насыщенного пара составляет 99,1°С, а температура насыщенного пара 309,5 °С может быть получена только при давлении 98,1 • 105 Па. Поэтому паровой обогрев применяется для процессов нагревания только до умеренных температур (порядка 60—150°С). Обычно давление греющего пара в теплообменниках составляет от 1,96 • 105 до 11,8 • 105 Па. Для высоких температур эти теплообменники очень громоздки (имеют толстые стенки и фланцы), весьма дороги и поэтому применяются редко.
Горячая вода, как греющий теплоноситель, получила большое распространение, особенно в отопительных и вентиляционных установках. Она приготовляется в специальных водогрейных котлах, производственных технологических агрегатах (например, в печах) или водонагревательных установках ТЭЦ. Горячую воду, как теплоноситель, можно транспортировать по трубопроводам на значительные расстояния (на несколько километров). Понижение температуры воды в хорошо изолированных трубопроводах составляет не более 1°С на 1 км.
Достоинством воды как теплоносителя является сравнительно высокий коэффициент теплообмена. Однако горячая вода из тепловых сетей в производственных теплообменниках используется редко, так как в течение отопительного сезона температура ее непостоянна и изменяется от 70 до 130°С, а в летнее время тепловые сети не работают.[1].
Дымовые
и топочные газы применяются
в качестве греющего
Таблица1-1.Характеристика некоторых высокотемпературных теплоносителей .
Название теплоносителя |
Химическая формула |
Температура,° С | |
| отвердевания |
кипения | |
Минеральные масла |
— |
0-15 |
215 |
Нафталин |
С10Н8 |
80,2 |
218 |
Дифенил |
С12Н10 |
69,5 |
255 |
Дифениловый эфир |
(С6Н5)О2 |
27 |
259 |
Дифенильная смесь (ВОТ) |
26,5% дифенила и 73,5% дифенилового эфира |
12,3 |
258 |
Глицерин |
С3Н5(ОН)3 |
-17,9 |
290 |
Кремнеорганические соединения (тетракрези-локсисилан и др.) |
(СН3С6Н4О)4 |
-(30-40) |
440 |
Натрий
|
Na |
97,8 |
883 |
Нитритнитратная смесь |
7%NaNO3+40%NaNO2+53% KNO3 |
143 |
Выше 550 |
Достоинством дымовых и топочных газов как теплоносителя является возможность достижения высокой температуры при атмосферном давлении, недостатками — громоздкость аппаратуры, обусловленная низкой теплоотдачей от газов к стенке, сложность регулирования рабочего процесса в теплообменном аппарате, пожарная опасность и сравнительно быстрый износ поверхностей теплообмена от золы, а также при чистке аппаратов. Существенным недостатком дымовых газов является также возможность использования их только непосредственно на месте получения, так как транспортировка их даже на небольшие расстояния требует значительных расходов электроэнергии, громоздких каналов и связана с большими тепловыми потерями.
В настоящее время в промышленности для высокотемпературного обогрева, кроме дымовых газов, применяют минеральные масла; органические соединения, расплавленные металлы и соли. Характеристика некоторых высокотемпературных теплоносителей дана в табл. 1.1.