Проектирование производственно-отопительной котельной с котлами ДКВР 6,5-13

Автор работы: Пользователь скрыл имя, 08 Сентября 2014 в 18:07, курсовая работа

Краткое описание

В данной курсовой работе выполнен проект производственно-отопительной котельной, расположенной в г.Самара на реке Волге. В качестве топлива используется природный газ нитки газопровода Средняя Азия - Центр.
Котельная используется для снабжения паром промышленного предприятия и для отопления жилого района. Тепловые нагрузки на технологические нужды – 12 тонн пара в час; на отопление и вентиляцию – 15 ГДж/час; на ГВС – 8 ГДж/час.
С производства конденсат возвращается с температурой tконд.техн.=60°С в количестве 50%

Прикрепленные файлы: 1 файл

Проектирование производственно-отопительной котельной с котлами ДКВР 6,5-13посл.docx

— 1.95 Мб (Скачать документ)

Общая жесткость представляет собой сумму величин временной и постоянной жесткости и характеризуется суммой содержания в воде кальциевых и магниевых солей: сернокислых (СаSО4 и МgSО4), хлористых (СаС12 и МgС12), азотнокислых (Са(NО3)2 и Мg(NО3)2), кремнекислых (СаSiO3 и МgSiO3), фосфорнокислых (Са3(РО4)2 и Мg(РО4)2), двууглекислых (Са(НСО3)2 и Мg(НСО3)2).

Временная жесткость характеризуется содержанием в воде бикарбонатов кальция и магния Са(НСО3)2 и Мg(НСО3)2. Постоянная жесткость обусловливается содержанием указанных выше солей кальция и магния, за исключением двууглекислых.

Для определения величины жесткости в настоящее время установлена единица показателя жесткости — миллиграмм-эквивалент на 1 кг раствора (мг-экв/кг) или микрограмм-эквивалент на 1 кг раствора (мкг-экв/кг); 1 мг-экв/кг жесткости соответствует содержанию 20,04 мг/кг иона кальция Са + или 12,16 мг/кг иона магния Мg2 +.

Щелочность воды характеризуется содержанием в ней щелочных соединений. Сюда относят гидраты, например NаОН — едкий натр, карбонаты Nа2СО3 — кальцинированная сода, бикарбонаты NаНСО3, Na3РО4 и др. Величина щелочности воды равна суммарной концентрации в ней гидроксильных, карбонатных, бикарбонатных, фосфатных и других анионов слабых кислот, выраженной в эквивалентных единицах (мг-экв/кг или мкг-экв/кг). В зависимости от преобладающего наличия в воде анионов тех или иных солей различают щелочность: гидратную (концентрация в воде гидроксильных анионов ОН), карбонатную (концентрация карбонатных анионов CO3²¯) и бикарбонатную (концентрация бикарбонатных анионов НСОз³¯.).

Окисляемость воды характеризуется наличием в воде кислорода и двуокиси углерода, выраженных в миллиграммах или микрограммах на килограмм.

 

Таблица 2.2.1. – Химический состав воды р.Волга при отборе пробы в г.Самара

Взвешенные вещества, мг/кг

Сухой остаток, мг/кг

Щелочность, мг-экв/кг

Жесткость, мг-экв/кг

Содержание катионов и анионов в воде, мг/кг

карбонатная

общая

Ca2+

Mg2+

Na+

Fe3+

HCO3-

SO42-

Cl-

NO3-

SlО32-

-

372

2,45

2,45

4,09

63,22

11,3

31,5

0,2

149,2

78,9

48,6

-

-


 

Вода, подготовленная для питания котельной установки, не должна давать отложений шлама и накипи, разъедать стенки котла и его вспомогательные поверхности нагрева, а также вспениваться.

 

    1. Обработка воды для паровых котлов

Исходными данными для выбора оборудования предварительной водоочистки является:

  • величина продувки котла;
  • содержание углекислоты в паре;
  • относительная щелочность котловой воды.

Обработка воды для водогрейных котлов включает в себя следующие основные этапы:

  • удаление взвешенных частиц;
  • удаление железа;
  • умягчение, предотвращение накипеобразования;
  • предотвращение коррозии (удаление кислорода и углекислого газа из питающей воды с помощью деаэраторов различных конструкций. Применение деаэратора позволяет существенно снизить содержание свободного кислорода (до 0,02 мг/кг), остальное же количество должно связываться химическим способом).

 

2.3.1 Удаление механических примесей  с помощью фильтров

Для удаления осаждаемых (песок, окислы железа, соли CaCO3 и другие тяжелые частицы) и взвешенных частиц (мелкая глина, грязь и органические вещества) используются механические фильтры различных конструкций.

При незначительных механических загрязнениях (до 5,0 мг/кг), можно устанавливать компактные фильтры картриджного типа (сменные или промывные), основные достоинства которых - малые габариты, высокие скорость и глубина фильтрации.

При содержании в воде взвешенных частиц более 15 мг/л, целесообразно осуществлять фильтрацию на напорных фильтрах с комбинированным слоем (песок + антрацит).

Отфильтрованные частицы, по мере необходимости, удаляются из слоя противоточной промывкой.

 

2.3.2 Умягчение воды методом ионного  обмена

Наиболее распространенным способом очистки воды для ее последующего использования в качестве теплоносителя являются методы ионного обмена. Сущность этих методов заключается в том, что вода фильтруется через специальный материал, называемый ионитом. Этот материал имеет способность изменять ионный состав воды в нужном направлении. С электрохимической точки зрения молекулы ионита представляют собой твердый электролит. В зависимости от того какой заряд несет диффузионный слой,  иониты разделяются на катиониты и аниониты.

Наиболее распространенными катионитами являются: сульфоуголь и ионообменные смолы КУ 1, КУ 2. Наиболее распространенные аниониты: АН-31, АВ-17, АВ-18. В зависимости от качества исходной воды и требований к качеству обработанной воды в практике применяют следующие методы ионного обмена: натрий-катионирование, водород-катионирование, хлор-ионирование, аммоний-катионирование.

 

Na-катионирование - наиболее распространенный метод обработки воды. Заключается  в фильтровании ее через слой катионита, содержащего обменный ион натрия.

При этом протекают следующие реакции:

Са(НСО)3 + 2NaR ® СаR2 + 2NaНСО3                                             

Mg(НСО)3 + 2NaR ® MgR2 + 2NaНСО3                                             

CaCl2 + 2NaR ® СаR2 + 2NaCl                                                            

MgSO4 + 2NaR ® MgR2 + Na2SO4                                                       

Как видно из приведенных реакций, кальциевые и магниевые соли, содержащиеся  в воде, вступают в обменные реакции с катионитом, замещая в нем натрий и, тем самым, умягчая воду. Вместо кальциевых и магниевых солей в обрабатываемой воде образуется эквивалентное количество легко растворимых натриевых солей. Следовательно, солесодержание при обработке воды не снижается, а несколько увеличивается. Щелочность воды и анионный состав при Na-катионировании не изменяются.

Эксплуатация катионитного фильтра сводится к последовательному проведению следующих операций: умягчение, взрыхление, регенерация, отмывка.

Основная операция процесса – умягчение. При умягчении происходит реакция обмена катионов Ca2+ и Mg2+ на катионы Na+. По мере прохождения ионного обмена катионит истощается и уплотняется, обменные реакции замедляются вплоть до проскока катионов Ca2+ и Mg2+ в обработанную воду. Для восстановления обменной способности катионита его взрыхляют и регенерируют. Взрыхление осуществляется обратным потоком воды, подаваемой из бака, расположенного выше фильтра, или с помощью насоса. Регенерация осуществляется раствором поваренной соли NaCl. Последней операцией является отмывка (промывка) катионита от остаточных продуктов регенерации.

В практике применяются две схемы умягчения воды по методу Na-катионирования: одноступенчатая и двухступенчатая.

Одноступенчатым Na-катионированием можно получить воду с остаточной жесткостью до 0,1 мг-экв/кг. При необходимости более глубокого умягченния воды (до 0,01 – 0,02 мг-экв/кг) следует применять двухступенчатое (последовательное) Na-катионирование.

Число ступеней катионирования определяется требованиями к обработанной воде; так для паровых экранированных котлов, где требуется глубокое умягчение воды, целесообразно применение схемы двухступенчатого Na-катионирования; для горячего водоснабжения, требуется частичное умягчение воды, достаточно одной ступени катионирования.

 

Н-катионирование. Обработка воды методом Н-катионирования состоит в фильтровании ее через слой катионита, содержащего в качестве обменных ионов катионы водорода. Протекающие в водородном фильтре реакции сводятся к замене катионов Ca2+ и Mg2+ и Na+ на катион водорода. При этом протекают следующие химические реакции:

Ca(HCO3)2 + 2НR ® СаR2 + 2Н2O + СО2­                                          

Mg(HCO3)2 + 2НR ® MgR2 + 2Н2O + СО2­                                        

CaCl2 + 2НR ® CaR2 + 2HCl                                                                

MgSO4+2НR® MgR2 + H2SO4                                                             

NaCl + НR ® NaR + HCl                                                                    

Na2SO4 +2НR ® 2NaR + H2SO4                                                         

2HR + Na2SiO3 ® 2NaR + H2SiO3                                                      

Следовательно, присутствующие в воде соли (сульфаты, хлориды и др.) превращаются в процессе ионного обмена в кислоты (серную, соляную и др.), т.е. обработанная вода имеет кислую реакцию (рН<7), что недопустимо. Поэтому Н-катионирование всегда совмещается с Na-катионированием, которое обуславливает щелочную реакцию обработанной воды.

Принцип работы Н-катионитного фильтра аналогичен работе Na-катионитного фильтра. Регенерация фильтра производится раствором серной кислоты.

Различают следующие схемы Н-Na-катионирования:

    • Н-Na-катионирование с «голодной» регенерацией фильтров;
    • параллельное Н-Na-катионирование;
    • последовательное Н-Na-катионирование;
    • совместное Н-Na-катионирование.

Н-Na-катионирование с «голодной» регенерацией фильтров применяется для обработки вод с повышенной карбонатной жесткостью при сравнительно малом содержании солей натрия.

Параллельное Н-Na-катионирование применяется в тех случаях, когда вода, поступающая на фильтры, имеет Жк > 0,5 Жо;

 

 и когда необходимо получить  умягченную воду с заданной  остаточной щелочностью не выше 0,35 мг-экв/кг.

Последовательное Н-Na-катионирование применяется для обработки сильно минерализованных вод с солесодержанием выше 1000 мг/кг при Жк < 0,5 Жо и  при

 

Совместное Н-Na-катионирование применяется в тех случаях, когда сумма анионов сильных кислот в воде, поступающей на фильтры, не превышает 3,5 мг-экв/кг и когда получаемая по этой схеме щелочность (Щост= 1 – 1,3 мг-экв/кг) не вызовет заметного увеличения продувки котлов сверх установленных норм.

 

Na-Cl-ионирование. Na-Cl-ионитный метод основан на умягчении воды с одновременным снижением щелочности и осуществляется путем последовательного фильтрования обрабатываемой воды через Na--катионитный фильтр первой ступени, Cl-анионитный фильтр и затем Na- катионитный фильтр второй ступени.

Вторую ступень Na-катионирования, как правило, совмещают в одном фильтре с Cl-ионированием, при этом внизу загружается катионит, а сверху сильноосновный анионит типа АВ – 17.

В этом методе катионит и анионит регенируются поваренной солью NaCl (Na+ регенерирует катионит, Cl- - анионит). В фильтрах первой ступени происходит умягчение воды по реакциям. Во второй ступени (в совмещенном Na-Cl-ионитном фильтре) в слое анионита происходит обмен анионов SO42-, NO3-, NO2-, HCO3-, содержащихся в воде, на хлор, а в слое катионита «проскочившие» катионы жесткости обмениваются на Na+.

При этом в анионите протекают следующие реакции:

Na2SO4 + 2АнCl ® АнSO4 + 2NaCl                                                   

NaNO3 + АнCl ® АнNO3 + NaCl                                                       

NaНСO3 + АнCl ® АнНСO3 + NaCl                                                 

Методом Na-Cl-ионирования воды можно снизить жесткость воды до 0,01 мг-экв/кг и щелочность до 0,2 мг-экв/кг.

 

    1. Выбор схемы обработки исходной воды

Выбор схемы обработки воды для котлов обуславливается:

  • Качеством исходной воды;
  • Требованиями к качеству пара, котловой и питательной воды.

Для выбора схемы обработки определим основные показатели водно-химического режима парового котла:

Величина продувки котла

 

 

(2.4.1)


 

Где - сухой остаток обработанной воды, мг/кг.

Для Na-катионирования   ;

- доля обработанной воды в питательной;

- сухой остаток котловой воды, мг/кг

 

 

(2.4.2)


 

Где - расход химобработанной воды, м3/ч;

- расход питательной воды воды, м3/ч;

 

   

 

Относительная щелочность котловой воды равна относительной щелочности обработанной воды и определяется по формуле:

 

(2.4.3)


Где - относительная щелочность обработанной воды, мг-экв/кг. Для схемы натрий-катионирования принимается равной щелочности исходной воды мг-экв/кг.

 

   

 

Содержание углекислоты в паре при использовании деаэратора с барботажем определяется по формуле:

 

(2.4.4)

Информация о работе Проектирование производственно-отопительной котельной с котлами ДКВР 6,5-13