Геотермальные электростанции

Автор работы: Пользователь скрыл имя, 04 Декабря 2012 в 18:58, реферат

Краткое описание

Определение геотермальной энергии заложено в самом её названии – это энергия тепла земных недр. Слой магмы, расположенный под земной корой, представляет собой огненно-жидкий, чаще всего силикатный расплав. Согласно подсчетам, энергетический потенциал тепла на глубине 10 тысяч метров в 50 тысяч раз превышает энергию мировых запасов природного газа и нефти.

Содержание

1. Геотермальные электростанции
2. Использование геотермальных источников в мире
3. Энергия низкопотенциальная, но перспективная
4. Энергия низкопотенциальная, но перспективная
Заключение

Прикрепленные файлы: 1 файл

энергетика1.doc

— 74.50 Кб (Скачать документ)

 

Вертикальные грунтовые  теплообменники используют низкопотенциальную тепловую энергию грунтового массива  ниже так называемой «нейтральной зоны» (10–20 метров от уровня земли). Такие  системы не требуют участков большой площади, а также не зависят от интенсивности солнечной радиации, падающей на поверхность. Им подходят почти все виды геологических сред, кроме грунтов с низкой теплопроводностью, например, сухого песка или гравия.

В вертикальных грунтовых теплообменниках теплоноситель циркулирует по трубам (чаще всего полипропиленовым или полиэтиленовым), уложенным в вертикальных скважинах глубиной от 50 до 200 метров.

Обычно используется два типа вертикальных грунтовых  теплообменников: U-образный и коаксиальный. Первый представляет собой две параллельные трубы, соединенные в нижней части. В одной скважине располагаются одна или две пары таких труб. Преимущество U-образного типа – сравнительно низкая стоимость изготовления.

Второй тип теплообменника (называемый также концентрическим) представляет собой две трубы разного диаметра, одна из которых размещается внутри другой.

Системы с вертикальными  грунтовыми теплообменниками пригодны для снабжения зданий как теплом, так и холодом. Небольшому строению хватит одного теплообменника, а вот для больших зданий может понадобиться несколько скважин с вертикальными теплообменниками. Как пример последнему служит система тепло- и холодоснабжения американского колледжа «Richard Stockton College», в которой используется рекордное количество скважин – 400 (глубиной 130 метров). В Европе самое большее число скважин (154 скважины глубиной 70 метров) пробурено для системы тепло- и холодоснабжения центрального офиса Германской службы управления воздушным движением.

 

 

Горизонтальный  грунтовый теплообменник

 

Горизонтальные грунтовые  теплообменники создаются обычно неподалеку от здания, на небольшой глубине, но обязательно ниже уровня промерзания грунта в зимний период. В Европе подобные теплообменники представляют собой плотно соединенные (последовательно или параллельно) трубы. Чтобы сэкономить площадь, созданы специальные типы теплообменников, например, в виде спирали. В качестве источника низкопотенциальной тепловой энергии перспективно использовать воды из туннелей и шахт, поскольку температура воды в них имеет постоянную температуру круглый год и легко доступна.

Использование подземного тепла, как высокопотенциального, так  и низкопотенциального, считается  крайне перспективным. Особенно это  касается обеспечения зданий теплым и охлажденным воздухом с помощью  низкопотенциального тепла.

По прогнозам Мирового Энергетического комитета (МИРЭК), к 2020 году развитые страны мира станут достаточно активно осуществлять теплоснабжение теплонасосными системами. И здесь подойдут не только «разгоряченные» земные недра, но также воздух и вода морей и океанов. Например, в Швеции, где близ Стокгольма размещена станция на шести баржах мощностью 320 МВт, используют воду Балтийского моря с температурой +4°С.

В Российской Федерации  огромные запасы природного газа, нефти, угля и леса позволяют (до поры до времени) не слишком задумываться об альтернативных источниках энергии. Однако работы по освоению геотермальных источников ведутся на ее территории не первый десяток лет, что свидетельствует о понимании важности вопроса. Ведь речь идет о неисчерпаемых источниках тепла и электричества, которые, рано или поздно, станут важными, и, возможно, основными поставщиками энергии для всего человечества, а не только для отдельно взятых стран.

 

 

 

 

 

 

 

 

 

4. Основные достоинства и недостатки геотермальной энергии

 

Современная востребованность геотермальной энергии как одного из видов возобновляемой энергии обусловлена: истощением запасов органического топлива и зависимостью большинства развитых стран от его импорта (в основном импорта нефти и газа), а также с существенным отрицательным влиянием топливной и ядерной энергетики на среду обитания человека и на дикую природу. Все же, применяя геотермальную энергию, следует в полной мере учитывать ее достоинства и недостатки.

Главным достоинством геотермальной  энергии является возможность ее использования в виде геотермальной воды или смеси воды и пара (в зависимости от их температуры) для нужд горячего водо- и теплоснабжения, для выработки электроэнергии либо одновременно для всех трех целей, ее практическая неиссякаемость, полная независимость от условий окружающей среды, времени суток и года. Тем самым использование геотермальной энергии (наряду с использованием других экологически чистых возобновляемых источников энергии) может внести существенный вклад в решение следующих неотложных проблем:

    • Обеспечение устойчивого тепло- и электроснабжения населения в тех зонах нашей планеты, где централизованное энергоснабжение отсутствует или обходится слишком дорого (например, в России на Камчатке, в районах Крайнего Севера и т.п.).
    • Обеспечение гарантированного минимума энергоснабжения населения в зонах неустойчивого централизованного энергоснабжения из-за дефицита электроэнергии в энергосистемах, предотвращение ущерба от аварийных и ограничительных отключений и т.п.
    • Снижение вредных выбросов от энергоустановок в отдельных регионах со сложной экологической обстановкой.

При этом в вулканических  регионах планеты высокотемпературное  тепло, нагревающее геотермальную  воду до значений температур, превышающих 140–150°С, экономически наиболее выгодно  использовать для выработки электроэнергии. Подземные геотермальные воды со значениями температур, не превышающими 100°С, как правило, экономически выгодно использовать для нужд теплоснабжения, горячего водоснабжения и для других целей в соответствии с рекомендациями, приведенными в табл. 1.

 

Таблица 1

Значение температуры  геотермальной воды,°С

Область применения геотермальной  воды

Более 140

Выработка электроэнергии

Менее 100

Системы отопления зданий и сооружений

Около 60

Системы горячего водоснабжения

Менее 60

Системы геотермального теплоснабжения теплиц, геотермальные холодильные установки и т.п.


 

Обратим внимание на то, что эти рекомендации по мере развития и совершенствования геотермальных  технологий пересматриваются в сторону  использования для производства электроэнергии геотермальных вод с все более низкими температурами. Так, разработанные в настоящее время комбинированные схемы использования геотермальных источников позволяют использовать для производства электроэнергии теплоносители с начальными температурами 70–80°С, что значительно ниже рекомендуемых в табл. 1 температур (150°С и выше). В частности, в Санкт-Петербургском политехническом институте созданы гидропаровые турбины, использование которых на ГеоТЭС позволяет увеличивать полезную мощность двухконтурных систем (второй контур – водный пар) в диапазоне температур 20–200°С в среднем на 22%.

Значительно повышается эффективность применения термальных вод при их комплексном использовании. При этом в разных технологических  процессах можно достичь наиболее полной реализации теплового потенциала воды, в том числе и остаточного, а также получить содержащиеся в термальной воде ценные компоненты (йод, бром, литий, цезий, кухонная соль, глауберова соль, борная кислота и многие другие) для их промышленного использования.

Основной недостаток геотермальной энергии – необходимость обратной закачки отработанной воды в подземный водоносный горизонт. Другой недостаток этой энергии заключается в высокой минерализации термальных вод большинства месторождений и наличии в воде токсичных соединений и металлов, что в большинстве случаев исключает возможность сброса этих вод в расположенные на поверхности природные водные системы. Отмеченные выше недостатки геотермальной энергии приводят к тому, что для практического использования теплоты геотермальных вод необходимы значительные капитальные затраты на бурение скважин, обратную закачку отработанной геотермальной воды, а также на создание коррозийно-стойкого теплотехнического оборудования.

Однако в связи с  внедрением новых, менее затратных, технологий бурения скважин, применением эффективных способов очистки воды от токсичных соединений и металлов капитальные затраты на отбор тепла от геотермальных вод непрерывно снижаются. К тому же следует иметь ввиду, что геотермальная энергетика в последнее время существенно продвинулась в своем развитии. Так, последние разработки показали возможность выработки электроэнергии при температуре пароводяной смеси ниже 80ºС, что позволяет гораздо шире применять ГеоТЭС для выработки электроэнергии. В связи с этим ожидается, что в странах со значительным геотермальным потенциалом и первую очередь в США мощность ГеоТЭС в самое ближайшее время удвоится.

 

 

 

 

 

 

Список литературы

 

1. Попов, М.С. Геотермальная  энергетика в России [Текст] / М.С.  Попов - М.: "Энергоатомиздат", 1988. - 294 с.

2. Максимов, И.Г. Альтернативные  источники энергии [Текст] / И.Г.  Максимов - М.: "Эко-Тренд", 2005. - 387 с.

3. Феофанов, Ю.А. Геотермальные электростанции [Текст] / Ю.А. Феофанов - М.: "Эко-Тренд", 2005. - 217 с.

4. Алхасов,  А.Б. Геотермальная энергетика: проблемы, ресурсы, технологии [Текст] / А.Б. Алхасов - М.: "Физматлит", 2008. - 376 с.

 

Размещен


Информация о работе Геотермальные электростанции