Методы экспертных оценок

Автор работы: Пользователь скрыл имя, 02 Декабря 2013 в 22:25, курсовая работа

Краткое описание

Целью моей работы является изучение метода экспертных оценок - одного из важнейших этапов принятия грамотных управленческих решений.
Задачи:
1) определение сущности и видов экспертных методов принятия решения;
2) выявление области применения экспертных методов принятия решения;
3) рассмотрение порядка организации экспертного оценивания;

Содержание

Введение ……………………………………………………………………………3
Глава 1. ЭКСПЕРТНЫЕ МЕТОДЫ ПРИНЯТИЯ РЕШЕНИЙ ………………. 5
Основные идеи методов экспертных оценок ………………………….5
Основные стадии экспертного опроса ……………………………… 9
Подбор экспертов ……………………………………………………. 11
О разработке регламента проведения сбора и анализа экспертных мнений …………………………………………………………………14
Глава 2. МЕТОДЫ ПРИНЯТИЯ РЕШЕНИЙ ………………………………… 22
2.1. Математические методы анализа экспертных оценок ……………… 22
2.2. Основные математические задачи анализа экспертных оценок …… 25
2.3. Проверка согласованности мнений экспертов и классификация экспертных мнений ………………………………………………………. 26
2.4. Нахождение итогового мнения комиссии экспертов ……………….. 28
Заключение ……………………………………………………………………… 30
Список литературы …………………………………………………………….. 32

Прикрепленные файлы: 1 файл

Курсовая.docx

— 71.33 Кб (Скачать документ)

МНЕНИЯ ДИССИДЕНТОВ. С целью  искусственно добиться согласованности стараются уменьшить влияние мнений экспертов-диссидентов. Жесткий способ борьбы с диссидентами состоит в игнорировании их мнений, т.е. фактически в их исключении из состава экспертной комиссии. Отбраковка экспертов, как и отбраковка резко выделяющихся результатов наблюдений (выбросов), приводит к процедурам, имеющим плохие или неизвестные статистические свойства. Так, известна крайняя неустойчивость классических методов отбраковки выбросов по отношению к отклонениям от предпосылок модели. 

Мягкий способ борьбы с диссидентами состоит в применении робастных (устойчивых) статистических процедур. Простейший пример: если ответ эксперта – действительное число, то резко выделяющееся мнение диссидента сильно влияет на среднее арифметическое ответов экспертов и не влияет на их медиану. Поэтому разумно в качестве согласованного мнения рассматривать медиану. Однако при этом игнорируются (не достигают ЛПР) аргументы диссидентов.  

В любом из двух способов борьбы с  диссидентами ЛПР лишается информации, идущей от диссидентов, а потому может принять необоснованное решение, которое впоследствии приведет к отрицательным последствиям. С другой стороны, представление ЛПР всего набора мнений снимает часть ответственности и труда по подготовке окончательного решения с комиссии экспертов и рабочей группы по проведению экспертного опроса и перекладывает эти ответственность и труд на плечи ЛПР.

ДОГМА ОДНОМЕРНОСТИ. В устаревшей, а иногда и в современной научно-технической литературе распространен довольно спорный подход так называемой "квалиметрии", согласно которому объект экспертизы всегда можно оценить одним числом. Странная идея! Оценивать человека одним числом приходило в голову лишь на невольничьих рынках.

Вместе с тем нельзя полностью  отрицать саму идею поиска обобщенных показателей качества, технического уровня и аналогичных. Так, каждый объект можно оценивать по многим показателям качества. Например, легковой автомобиль можно оценивать по таким показателям:  

расход бензина на 100 км пути (в  среднем); 

надежность (в том числе средняя  стоимость ремонта за год); 

экологическая безопасность; 

маневренность (в том числе радиус поворота); 

быстрота набора скорости 100 км/час  после начала движения; максимальная достигаемая скорость; 

длительность сохранения в салоне положительной температуры при  низкой наружной температуре и выключенном двигателе; 

дизайн (привлекательность и "модность" внешнего вида и отделки); 

вес, и т.д.

Таким образом, важна конкретная (узкая) постановка задачи перед экспертами. Но такой постановки зачастую нет. А тогда "игры" по разработке обобщенного показателя качества - например, в виде линейной функции от перечисленных переменных - не могут дать объективных выводов. Альтернативой единственному обобщенному показателю является математический аппарат типа многокритериальной оптимизации - множества Парето и т.д. 

В некоторых случаях все-таки можно  глобально сравнить объекты - например, с помощью тех же экспертов получить упорядочение рассматриваемых объектов - изделий или проектов. Тогда можно ПОДОБРАТЬ коэффициенты при отдельных показателях так, чтобы упорядочение с помощью линейной функции возможно точнее соответствовало глобальному упорядочению (например, найти эти коэффициенты методом наименьших квадратов). Наоборот, в подобных случаях НЕ СЛЕДУЕТ оценивать указанные коэффициенты с помощью экспертов. Эта простая идея до сих пор не стала очевидной для отдельных составителей методик по проведению экспертных опросов и анализу их результатов. Они упорно стараются заставить экспертов делать то, что они выполнить не в состоянии - указывать веса, с которыми отдельные показатели качества должны входить в итоговый обобщенный показатель.

Эксперты обычно могут сравнить объекты или проекты в целом, но не могут вычленить вклад отдельных  факторов. Раз организаторы опроса спрашивают, эксперты отвечают, но эти ответы не несут в себе надежной информации о реальности...

ВТОРОЕ ОСНОВАНИЕ КЛАССИФИКАЦИИ  ЭКСПЕРТНЫХ ПРОЦЕДУР – ЧИСЛО ТУРОВ. Экспертизы могут включать один тур, некоторое фиксированное число туров (два, три,…) или неопределенное число туров. Чем больше туров, тем более тщательным является анализ ситуации, поскольку эксперты при этом обычно много раз возвращаются к рассмотрению предмета экспертизы. Но одновременно увеличивается общее время на экспертизу и возрастает ее стоимость. Можно уменьшить расходы, вводя в экспертизу не всех экспертов сразу, а постепенно.

Наибольшие сложности вызывают процедуры с заранее неопределенным числом туров, например, "снежный ком". Часто задают максимально возможное число туров, и тогда неопределенность сводится к тому, придется ли проводить это максимальное число туров или удастся ограничиться меньшим числом.

ТРЕТЬЕ ОСНОВАНИЕ КЛАССИФИКАЦИИ  ЭКСПЕРТНЫХ ПРОЦЕДУР - ОРГАНИЗАЦИЯ ОБЩЕНИЯ ЭКСПЕРТОВ. Рассмотрим достоинства и недостатки каждого из элементов шкалы: отсутствие общения – заочное анонимное общение – заочное общение без анонимности – очное общение с ограничениями - очное общение без ограничений. При отсутствии общения эксперт высказывает свое мнение, ничего не зная о других экспертах и об их мнениях. Он полностью независим, что и хорошо, и плохо. Обычно такая ситуация соответствует однотуровой экспертизе. Заочное анонимное общение, например, как в методе Дельфи, означает, что эксперт знакомится с мнениями и аргументами других экспертов, но не знает, кто именно высказал то или иное положение. Следовательно, в экспертизе должно быть предусмотрено хотя бы два тура. Заочное общение без анонимности соответствует, например, общению по Интернету. Все варианты заочной экспертизы хороши тем, что нет необходимости собирать экспертов вместе, следовательно, находить для этого удобное время и место.

При очных экспертизах эксперты говорят, а не пишут, как при заочных, и потому успевают за то же время  сказать существенно больше. Очная экспертиза с ограничениями весьма распространена. Это – собрание, идущее по фиксированному регламенту. Примером является военный совет в императорской русской армии, когда эксперты (офицеры и генералы) высказывались в порядке от младшего (по чину и должности) к старшему. Наконец, очная экспертиза без ограничений – это свободная дискуссия. Все очные экспертизы имеют недостатки, связанные с возможностями отрицательного влияния на их проведение социально-психологических свойств и клановых (партийных) пристрастий участников, а также неравенства их профессионального, должностного, научного статусов. Представьте себе, что соберутся вместе 5 лейтенантов и 3 генерала. Независимо от того, какая информация имеется у того или иного участника встречи, ход ее предсказать нетрудно: генералы будут беседовать, а лейтенанты – помалкивать. При этом вполне очевидно, что лейтенанты получили образование позже генералов, а потому обладают полезной информацией, которой нет у генералов.

КОМБИНАЦИЯ РАЗЛИЧНЫХ ВИДОВ  ЭКСПЕРТИЗЫ. Реальные экспертизы часто представляют собой комбинации различных описанных выше типов экспертиз. В качестве примера рассмотрим защиту студентом дипломного проекта. Сначала идет многотуровая очная экспертиза, проводимая научным руководителем и консультантами, в результате студент подготавливает проект к защите. Затем два эксперта работают заочно – это автор отзыва сторонней организации и заведующий кафедрой, допускающий работу к защите. Обратите внимание на различие задач этих экспертов и объемов выполняемой ими работы – один пишет подробный отзыв, второй росписью на титульном листе проекта разрешает его защиту. Наконец – очная экспертиза без ограничений (для членов ГАК – государственной аттестационной комиссии). Дипломный проект оценивается коллегиально, по большинству голосов, при этом один из экспертов (научный руководитель) знает работу подробно, а остальные – в основном лишь по докладу. Отметим, что мнения экспертов учитываются с весами, а именно, мнения членов ГАК – с весом 1, мнения всех остальных – с весом 0 (совещательный голос). Таким образом, имеем сочетание многотуровой и однотуровой, заочных и очных экспертиз. Подобные сочетания характерны для многих реально проводящихся экспертиз.

 

Глава 2. МЕТОДЫ ПРИНЯТИЯ РЕШЕНИЙ

2.1. Математические методы анализа экспертных оценок

 

 

 Для более углубленного рассмотрения проблем экспертных оценок понадобятся некоторые понятия так называемой репрезентативной теории измерений, служащей основой теории экспертных оценок, прежде всего той ее части, которая связана с анализом заключений экспертов, выраженных в качественном (а не в количественном) виде. 

Репрезентативная (т.е. связанная  с представлением отношений между реальными объектами в виде отношений между числами) теория измерений (в дальнейшем сокращенно РТИ) является одной из составных частей эконометрики. А именно, она входит в состав статистики объектов нечисловой природы. Нас РТИ интересует прежде всего в связи с развитием теории и практики экспертного оценивания, в частности, в связи с агрегированием мнений экспертов, построением обобщенных показателей (их называют также рейтингами). 

Получаемые от экспертов  мнения часто выражены в порядковой шкале, т.е. эксперт может сказать (и обосновать), что один тип продукции будет более привлекателен для потребителей. Чем другой, один показатель качества продукции более важен, чем другой, первый технологический объект более опасен, чем второй, и т.д. Но он не в состоянии сказать, во сколько раз или на сколько более важен, соответственно, более опасен. Поэтому экспертов часто просят дать ранжировку (упорядочение) объектов экспертизы, т.е. расположить их в порядке возрастания (или, точнее, неубывания) интенсивности интересующей организаторов экспертизы характеристики. 

Ранг - это номер (объекта  экспертизы) в упорядоченном ряду. Формально ранги выражаются числами 1, 2, 3, ..., но весьма важно то, что с этими числами нельзя делать привычные арифметические операции. Например, хотя 2 + 3 = 5, но нельзя утверждать, что для объекта, стоящем на третьем месте в упорядочении (в другой терминологии - ранжировке), интенсивность изучаемой характеристики равна сумме интенсивностей объектов с рангами 1 и 2. Так, один из видов экспертного оценивания - оценки учащихся. Вряд ли кто-либо будет всерьез утверждать, что знания отличника равны сумме знаний двоечника и троечника (хотя 5 = 2 + 3), хорошист соответствует двум двоечникам (2 + 2 = 4), а между отличником и троечником такая же разница, как между хорошистом и двоечником (5 - 3 = 4 - 2). Поэтому очевидно, что для анализа подобного рода качественных данных необходима не обычная арифметика, а другая теория, дающая базу для разработки, изучения и применения конкретных методов расчета. Эта другая теория и есть РТИ. Основы РТИ рассмотрены в главе 2.1. 

Рассмотрим в качестве примера применения результатов  теории измерений, связанных со средними величинами в порядковой шкале, один сюжет, связанный с ранжировками и рейтингами.

Методы средних  баллов. В настоящее время распространены экспертные, маркетинговые, квалиметрические, социологические и иные опросы, в которых опрашиваемых просят выставить баллы объектам, изделиям, технологическим процессам, предприятиям, проектам, заявкам на выполнение научно-исследовательских работ, идеям, проблемам, программам, политикам и т.п. Затем рассчитывают средние баллы и рассматривают их как интегральные (т.е. обобщенные, итоговые) оценки, выставленные коллективом опрошенных экспертов. Какими формулами пользоваться для вычисления средних величин? Ведь средних величин существует, как мы знаем, очень много разных видов.

Обычно применяют среднее арифметическое. Специалисты по теории измерений уже около 30 лет знают, что такой способ некорректен, поскольку баллы обычно измерены в порядковой шкале. Обоснованным является использование медиан в качестве средних баллов. Однако полностью игнорировать средние арифметические нецелесообразно из-за их привычности и распространенности. Поэтому представляется рациональным использовать одновременно оба метода - и метод средних арифметических рангов (баллов), и методов медианных рангов. Такая рекомендация находится в согласии с общенаучной концепцией устойчивости, рекомендующей применять различные методы для обработки одних и тех же данных с целью выделить выводы, получаемые одновременно при всех методах. Такие выводы, видимо, соответствуют реальной действительности, в то время как заключения, меняющиеся от метода к методу, зависят от субъективизма исследователя, выбирающего метод обработки исходных экспертных оценок.

Метод согласования кластеризованных ранжировок. Проблема состоит в выделении общего нестрогого порядка из набора кластеризованных ранжировок (на статистическом языке – ранжировок со связями). Этот набор может отражать мнения нескольких экспертов или быть получен при обработке мнений экспертов различными методами. Предлагается метод согласования кластеризованных ранжировок, позволяющий «загнать» противоречия внутрь специальным образом построенных кластеров (групп), в то время как упорядочение кластеров соответствует одновременно всем исходным упорядочениям.   

В различных прикладных областях возникает необходимость анализа  нескольких кластеризованных ранжировок объектов. К таким областям относятся прежде всего экология, инженерный бизнес, менеджмент, экономика, социология, прогнозирование, научные и технические исследования и т.д., особенно те их разделы, что связаны с экспертными оценками. В качестве объектов могут выступать образцы продукции, технологии, математические модели, проекты, кандидаты на должность и др. Кластеризованные ранжировки могут быть получены как с помощью экспертов, так и объективным путем, например, при сопоставлении математических моделей с экспериментальными данными с помощью того или иного критерия качества.

В кластеры заключены объекты, по поводу которых некоторые из исходных ранжировок противоречат друг другу. Для их упорядочения необходимо провести новые исследования. Эти исследования могут быть как формально-математическими (например, вычисление медианы Кемени (о ней – ниже), упорядочения по средним рангам или по медианам и т.п.), так и требовать привлечения новой информации из соответствующей прикладной области, возможно, проведения дополнительных научных или прикладных работ.

Информация о работе Методы экспертных оценок