Жизненный цикл промышленных изделий. Этап утилизации

Автор работы: Пользователь скрыл имя, 26 Июня 2014 в 21:24, реферат

Краткое описание

В 1996 году Федерация промышленности печатных плат Великобритании сформировала Рабочую группу (Printed Circuit Industry Federation (PCIF)) по вопросам охраны окружающей среды, которая поставила перед собой задачу помочь электронной промышленности Великобритании свести к минимуму отходы производства и сделать рентабельной переработку этих отходов. Ее деятельность была в основном направлена на экологические аспекты, а именно на оказание помощи в решении вопросов, связанных с охраной окружающей среды. Рабочая группа (PCIF) провела обзорное исследование экологически рациональных технологий в производстве электроники, с которыми знакомит эта публикация.

Содержание

Обзор существующего положения 2
Повторное использование отходов 2
Экономические аспекты повторного использования отходов 5
Методы разделения и выделения продуктов 6
Характерные особенности отходов печатных плат 6
Различия в плотности 7
Различие магнитных и электропроводных свойств 7
Полиформность 8
Степень отделения разнородных материалов 8
Химическая активность 8
Электропозитивность 8
Новые технологии 8
Механические методы 8
Гидрометаллургический метод 12
Демонтаж 12
Выводы 14
Обсуждение 14
Ключевые моменты 15
Заключение 15

Прикрепленные файлы: 1 файл

Реферат по Суворову Фомин В.Ю. МИП12-01.docx

— 179.20 Кб (Скачать документ)

Таблица 3. Удельный вес типичных материалов

Материалы

Удельный вес материалов (г/см3)

Золото, платиновая группа, вольфрам

19,3–21,4

Свинец, серебро, молибден

10,2–11,3

Магний, алюминий, титан

1,7–4,5

Медь, никель, железо, цинк

7,0–9,0

Стеклопластик (GRP)

1,8–2,0


Пневмотехнологии, которые удачно сочетают в себе эффекты псевдосжиженного слоя, вибрации среды и пневмосепарации, успешно применяются в случаях разделения разнообразных частиц из электронных отходов. При этом очень важно, чтобы загружаемая смесь была однородной по размерам фракций, что гарантирует эффективную сепарацию.

Различие магнитных и электропроводных свойств

Черные металлы легко отделяются в магнитном сепараторе, который используется в минералообрабатывающей отрасли.

Многие цветные металлы благодаря своей высокой электропроводности могут отделяться в электростатическом сепараторе и сепараторе с вихревыми токами. Способ разделения с помощью вихревых токов был разработан в отрасли утилизации отходов, когда появился сильный постоянный электромагнит из сплава железо–борнеодим. Установка в виде вращающегося ремня с использованием вихревых токов наиболее широко применяется для разделения цветных металлов на фракции. В процессе ее применения переменное магнитное поле, формируемое с помощью быстро вращающегося колеса с прикрепленными к нему постоянными магнитами с переменными полюсами, создает вихревые токи в проводниках из цветных металлов, которые в свою очередь генерируют магнитное поле, отталкивающееся от первоначального магнитного поля. Результирующая сила, возникшая как результат силы отталкивания, и сила тяготения обеспечивают отделение цветных металлов от непроводящих материалов.

 

Полиформность

Одним из важных качеств отходов ПП и электронных отходов является разнообразие форм составляющих их материалов и компонентов, что сказывается на эффективности разделения материалов. При разделении с помощью вихревых токов значительный эффект на генерирование сил отталкивания оказывает форма проводящих компонентов, размер их частиц и соотношение проводимость/плотность. Множество петель индуцированных токов может образовываться в проводящих частицах неправильной формы, при этом индуцированные на разных участках частиц магнитные поля, противодействуя друг другу, могут снижать результирующую силу отталкивания.

Степень отделения разнородных материалов

Решающим моментом в производительности и эффективности любого процесса разделения материалов является степень их отделения друг от друга при размельчении. Исследования показали, что только размельчение отходов ПП обеспечивает эффективное разделение материалов. В частности, были сообщения о разделении материалов на 96–99% после измельчения до частиц размером менее 5 мм. Но основной проблемой при механической обработке являются потери, в особенности драгоценных металлов, связанные с самой природой множества сопряжений пластик/металл.

Химическая активность

Гидрометаллургический метод разделения зависит от избирательного растворения металлов, содержащихся в бракованных ПП. Эффективность всех гидрометаллургических методов повышается с использованием предварительного измельчения, однако это делается, прежде всего, для снижения объема насыпного материала и для того, чтобы обеспечить большую поверхность травления металлов. Применяя метод избирательного растворения, можно использовать высокоэффективные травильные растворы на основе хлорида меди или сульфата аммония для растворения меди; растворы на основе азотной кислоты для растворения припоя и царскую водку для растворения драгоценных металлов.

Электропозитивность

Растворенные металлы представляют собой диссоциированные в водной среде ионы. Их можно восстанавливать до металлического состояния путем электролиза. В случае если используется избирательное растворение, восстанавливается один металл. В этом процессе восстановления металла одновременно восстанавливается и травильный раствор для повторного использования. В случае с общим растворением всех металлов (например, в царской водке) можно использовать различия в электрохимических потенциалах металлов, содержащихся в растворе, для избирательного восстановления на дискретных уровнях прилагаемого напряжения.

Новые технологии

Механические методы

Вся работа, выполняемая с помощью механических систем, направлена, прежде всего, на увеличение эффекта разделения отходов на различные фракции. Основная технология механической переработки, применяемая при утилизации бракованных ПП и электронных блоков, была заимствована из технологий обогащения горных руд и адаптирована к процессам утилизации продуктов электроники.

В настоящее время серийно выпускаются системы механической очистки для переработки разнообразных материалов электронных отходов, включая платы с компонентами и пустые платы. Одна из таких систем разработана фирмой Hamos GmbH в Германии и представляет собой автоматизированную интегральную систему механической переработки, включающую следующие этапы:

  • первичное измельчение крупных фракций с помощью измельчителя с вращающимися ножами разнообразного применения;
  • отделение крупных фракций черных металлов с помощью сильных магнитов, расположенных над вибрирующим конвейером;
  • измельчение в порошок — в этом процессе платы превращаются в порошок в шаровой мельнице, в которой используются шары, устойчивые к стиранию;
  • просеивание с использованием самоочищающихся сит;
  • электростатическое разделение, позволяющее фактически завершить разделение металлических фракций путем рециркуляции фракций частиц среднего размера;
  • дальнейшее уменьшение размера, представляющее собой вторичное измельчение в порошок для уменьшения размера крупных частиц.

Система Нamos может дополнительно включать устройство для разделения фракций по плотности для извлечения алюминия и других металлов. Система Нamos имеется сейчас в продаже (рис. 2). Она перерабатывает электронные отходы с производительностью до 4 т/ч. Переработанная продукция, включающая смесь пластиков, металлы, экстрагированные железистые материалы и алюминий, автоматически пакуется в мешки для дальнейшей транспортировки.

 

 

Рис. 2. Общий вид установки Hamos

Ведется работа по увеличению эффективности систем механической очистки. Представлена, например, новая технология измельчения с использованием множества измельчающих роторов с керамическим покрытием. Это дало возможность добиться измельчения отходов до размера частиц меньше миллиметра. В свою очередь, это позволило повысить эффективность технологий последующего разделения с помощью центрифуги, что дает выход выделенной меди до 97% (рис. 3).

Рис. 3. Утилизация отходов с использованием процесса дробления

На предприятии Daimler–Benz в городе Ульм (Германия) разработали метод механической очистки, который дает возможность повысить эффективность отделения металлов. Основной задачей этой работы являлось увеличение степени чистоты выделяемых металлов до такого уровня, чтобы при последующей плавке было минимальное количество загрязняющих выбросов в атмосферу. Процесс включает первоначальное уменьшение частиц большого размера до фракций размером примерно 2×2 см с последующим магнитным извлечением черных металлов. Далее следует этап перемалывания при низких температурах. Здесь используется эффект перехода в хрупкое состояние полимерных компонентов при температурах ниже 70 °C. В шаровую мельницу подается жидкий азот при температуре −196 °C, который придает хрупкость пластиковым составляющим загружаемого сырья. Кроме того, размалывание материалов в такой инертной атмосфере исключает какую–либо вероятность образования токсичных побочных продуктов из пластика, таких как диоксины и фураны. Далее следует этап разделения черных и цветных металлов с помощью магнитной и электростатической сепарации. Анализ затрат, проведенный инженерами фирмы Daimler–Benz, показал, что такой процесс может быть экономически целесообразным даже при переработке отходов ПП относительно низкой категории, имеющих малое содержание драгоценных металлов.

Проводились также исследования систем разделения материалов на пневмостоле с целью улучшения отделения металлических и пластиковых компонентов от загружаемого сырья в виде просеянных через сито с отверстиями 7 мм размельченных частиц отходов ПП после ферромагнитной сепарации. Уровни восстановления для меди, золота и серебра — 76, 83 и 91% соответственно — позволили утвердить этот метод утилизации не только для отходов электронной продукции, но и для ПП низкой категории.

Гидрометаллургический метод

Гидрометаллургические методы традиционно применяются для восстановления золота с контактных поверхностей разъемов. Золото высвобождалось либо в виде металлических чешуек посредством растворения в кислоте медных подложек, либо посредством растворения золота в растворах на основе цианида или тиомочевины, с последующим электролитическим осаждением или химическим замещением с использованием цинка.

Были также предприняты различные исследования возможности использования разбавленных неорганических кислот в сочетании с последующими технологиями восстановления металлов методами концентрационного разделения, экстракции, ионного обмена и т. п.

Разработан ряд гидрометаллургических методов и опытных установок переработки отходов, показавших возможность получения прибыли в процессе переработки (процессинг) примерно $200 на тонну, не считая стоимости извлеченных драгметаллов.

Демонтаж

Демонтаж считается неотъемлемой операцией утилизации бракованных плат с компонентами. Он проводится на нескольких уровнях: либо OEM; либо самими производителями оборудования для восстановления компонентов с бракованной продукции или произведенной в избыточном количестве для повторного использования или замены; либо специальными подрядчиками, выполняющими эту функцию для производителя; либо фирмами по рециркулированию или по демонтажу для повторной продажи на рынке вторичных материалов. Практически все подобного рода операции демонтажа выполняются вручную, что само по себе накладывает ограничения на эту операцию из–за расходов на трудозатраты.

Технологии механического, автоматизированного и роботизированного демонтажа рассматривались как с точки зрения сокращения трудозатрат, так и для обеспечения комфортных условий труда. Компания SAT (Австрия) разработала методику автоматизированного демонтажа компонентов с избыточных или неисправных плат с компонентами (рис. 4). Эта методика используется в первую очередь для демонтажа дорогих компонентов. Однако существует вероятность развития этой технологии для выполнения демонтажа всех компонентов. Компания SAT считает, что демонтаж компонентов любым ручным способом требует много времени и финансовых затрат и в будущем не найдет широкого применения в общем процессе переработки отходов электроники, объемы которых в Европе, по оценке организации SAT, в настоящее время составляют 400 000 т в год. Технология SAT использует автоматический поиск и снятие припоя двойным лучом лазера с последующим снятием выбранных компонентов вакуумным пинцетом. Операция по демонтажу компонентов включает следующие этапы:

Рис. 4. Схема утилизации плат с компонентами по технологии SAT

  • поиск — прочтение идентифицирующих данных всех компонентов;
  • прочтение базы данных хранимых на складе компонентов для определения их стоимости и потребности;
  • процесс определения, как припаяны или смонтированы идентифицированные компоненты;
  • демонтаж выбранных компонентов — осуществляется роботом в течение 3–5 с;
  • снятие припоя с помощью лазера или инфракрасного излучения методом, определенным для конкретного типа корпуса компонента.

Было также разработано оборудование для снятия компонентов по конвейерному принципу, путем нагрева инфракрасным излучением и стряхивания компонентов с платы с помощью ударяющих валиков.

Выводы

Обсуждение

Бурно развивающееся производство электроники создает все большее количество отходов. Среди отходов электронного оборудования самой большой стоимостью обладают платы, содержащие драгоценные металлы. Это привело к развитию коммерческой инфраструктуры, основанной на сборе печатных плат с последующей их сортировкой по содержанию драгоценных металлов и восстановлением путем переплавки в плавильной печи.

Большинство отходов плат (примерно 85%) вывозится на мусорные свалки. Это приводит к нерациональным потерям ограниченных материальных ресурсов и, кроме того, дает большую нагрузку на мусорные свалки. Утилизация отходов электроники позволит сократить потребности в мусорных свалках, а также будет способствовать восстановлению ценных материалов и компонентов для повторного использования. Несмотря на то, что за последние пять лет стоимость электронных компонентов значительно снизилась, все же существует значительный спрос на многие восстановленные компоненты, и вариант уменьшения нагрузки на мусорные свалки приобрел как никогда большое значение. Что касается продукции, получаемой из отходов, то можно рассматривать две категории ее утилизации: утилизация компонентов и утилизация материалов плат. В различных вариантах утилизации, которые были рассмотрены в этом обзорном исследовании, есть общее, как показано на рис. 5.

Рис. 5. Общая схема утилизации электронных отходов

Не так уж редко в процессе демонтажа отделяются компоненты и/или материалы, которые можно использовать повторно, которые можно идентифицировать или которые являются опасными для окружающей среды.

Информация о работе Жизненный цикл промышленных изделий. Этап утилизации