Выбор параметров оборудования при гидравлическом разрыве пласта

Автор работы: Пользователь скрыл имя, 22 Сентября 2014 в 18:30, дипломная работа

Краткое описание

В данном дипломном проекте рассматривается проведение гидравлического разрыва пласта (ГРП) на месторождении Кумколь для увеличения интенсификации притока нефти в скважины. Произведены расчеты параметров ГРП, количество агрегатов, радиуса трещины. В работе рассмотрены оборудование, материалы, применяемые при ГРП, сущность ГРП, цели ГРП.

Прикрепленные файлы: 1 файл

Диплом.docx

— 1.69 Мб (Скачать документ)

К горизонту Ю-III (III эксплуатационный объект) приурочена газо-нефтяная залежь, расположенная в интервале глубин 1221.4-1317.0 м.

Залежь пластовая, тектонически экранированная, сводового типа. Продуктивный горизонт Ю-III отделяется от горизонта Ю-II повсеместно выдержанным глинистым пластом, толщина которого местами (район скв.408, 2-р, 2109, 3054, 3055) сокращается до 2-3 м.

Отметки водонефтяного контакта отбиваются в интервале – 1195-1198 м.

В подсчете запасов 2000 г ВНК принят на отметке – 1198 м.

По данным эксплуатационного бурения в сводовой части залежи выявлена небольшая по размерам газовая шапка, газо-нефтяной контакт отбивается на отметках – 1112.0 – 1113.0 м.

Наличие газовой шапки обосновано данными интерпретации ГИС по скважинам 243, 1032, 1033, 330, 2088, 3047 и 3033.

Водонефтяной и газонефтяной контакт горизонта Ю-III совпадает с водонефтяным и газонефтяным контактами II эксплуатационного объекта (горизонты Ю-I и Ю-II).

В процессе эксплуатационного разбуривания залежи отмечено уменьшение площади продуктивности в восточной приразломной части за счет более крутого падения пластов.

В западной части (район разведочной скважины 17) залежь нефти горизонта Ю-III ограничена выступом фундамента.

Размеры залежи составляют 7.5х6.5 км, высота залежи равна 94 м, в том числе по нефтяной части 86 м, по газовой 8 м. Площадь нефтеносности составляет 43416 тыс. м2.

Размеры газовой шапки горизонта Ю-III составляют 1.5х0.75 км. К горизонту Ю-IV приурочена газонефтяная залежь, расположенная в интервале глубин 1270.4-1320.0 м. Залежь пластово-массивная, стратиграфически и тектонически экранированная, сводового типа.

Газонефтяной контакт по отчету подсчета запасов нефти 1987 г принят на отметке – 1179.0 м

Водонефтяной контакт в подсчете запасов нефти 1987 принят на отметке – 1198 м.

По данным эксплуатационного бурения ВНК в большинстве скважин колеблется в интервале отметок – 1195-1198 м.

В юго-восточной, центральной и северной частях залежи выявлены зоны отсутствия коллекторов по нефтенасыщенной части разреза.

В газовой части залежи отсутствие коллекторов наблюдается в центральной части в районе скважин 330, 431 и 3023, а в восточной части в скважине 2079.

Размеры залежи равны 3.5х3.2 км. Высота залежи 42 м, в том числе нефтяная часть 19 м, газовая 23 м. Площадь нефтеносности 11217 тыс. м2, а газоносности 7085 тыс. м2.

В 2002 году выполнены отбор и иследования глубинных проб из 7 скважин II и III объектов разработки месторождения Кумколь. Это скважины 2029,2067,2170,2176 (II объект), 3053,3004,3087 (III объект). Исследования выполнялись по заказу ОАО “ПетроКазахстан Кумколь Ресорсиз” в лабораториях НИПИнефтегаз и PENCOR International Ltd.

Исследования глубинных проб нефти выполнялись на установках PVT высокого давления АСМ-600  (НИПИнефтегаз и фирмы “RUSKA” (PENCOR). По пробам были выполнены следующие виды работ: опыт  объемного расширения нефти; опыт однократного разгазирования пластовой нефти от пластовых условий до стандартных (Р=0.1013 МПа, Т=20 0С); определение вязкости пластовой нефти; определение компонентных составов газа и пластовой нефти; опыт дифференциального разгазирования пластовой нефти (таблицы 1.6 – 1.12)

Газосодержания проб нефти отобранных из скважин II объекта разработки (горизонты Ю-I, Ю-II) меняются от 125.2 м3/т до 157.8 м3/т и в среднем составляют 141.8 м3/т. Объемный коэффициент соответственно меняется от 1.309 до 1.386 и составляет в среднем 1.353.

Пробы нефти, отобранные из скважин горизонта Ю-III имеют газосодержания 127.9 – 151.7 м3/т и в среднем равны 145 м3/т. Объемный коэффициент меняется соответственно от 1.332 до 1.369 составляя в среднем 1.352. В сооответствии с газонасыщенностью изменяются и остальные параметры.

Как видно диапазоны изменения параметров пластовой нефти по скважинам Ю-I, Ю-II, Ю-III горизонтов практически одинаковы, что подтверждает предположение о единстве этих нефтей.

Как известно, в процессе разработки месторождения месторождения Кумколь на естественном режиме, из-за отставания обустройства месторождения и ввода системы ППД, произошло повсеместное снижение текущего пластового давления относительно начального давления насыщения и по состоянию на 01.01.2003 года среднее текущее пластовое давление по горизонтам Ю-I, Ю-II и Ю-III составляет 10.7 МПа.

По глубинным пробам, отобранным и исследованным в 2002 году давления насыщения получены в диапазоне 8.6 МПа – 10.94 МПа по II-объекту и 9.74 МПа – 11.05 МПа по III объекту. Причиной различий по скважинам значений давления насыщения и остальных параметров, по видимому, является следующее:

  • влияние контакта пластовой нефти с водой. Все скважины находятся близко к контуру ВНК. Часть глубинных проб содержала воду (скважины №2029, 2067, 3053), которую до исследования отстояли и слили;
  • не во всех скважинах перед отбором проб восстановлены пластовые давления и Рнас получено на уровне Рзаб. Эти скважины №2029, 2170, 3004, 3087.

Содержание метана в нефтяном газе II объекта разработки изменяется в диапазоне 40.41-50.73  %мол. и в среднем составляет 46.8  %мол., в пробах III объекта -  от 45.31  %мол. до 52.36  %мол. и в среднем равен 49.4  %мол. Этана в газе Ю-I, Ю-II горизонта содержится 17.33-19.16  %мол., в газе Ю-III горизонта – 16.69-17.63  %мол. Содержание пропана в среднем по II- объекту составляет 18.9  %мол., по III объекту – 17  %мол.

Нефть месторождения Кумколь легкая, парафинистая, смолистая, малосернистая. Выход светлых фракций нефти по пробам изменяется от 35 до 44  %об., составляя в среднем 40%об. Влияние воды на свойства дегазированой нефти хорошо прослеживается по пробам нефти из скважин №№2029, 2067, 2170, по которым получены ухудшенные вязко-плотностные характеристики. Так плотность нефти по обводненным скважинам превышает 0.833 г/см3, вязкость при 40 0С изменяется от 8.46 до 11.16 мПа*с, против 6.5-7.27 мПа*с по обводненным пробам (скважины №2176, 3004, 3053, 3087).

 

 

1.3 Современные методы интенсификации притока нефти к добывающей скважины

 

Методы увеличения проницаемости пород призабойной зоны скважин можно условно разделить на химические, физические и тепловые.

Химические методы. Химические методы воздействия дают хорошие результаты в слабопроницаемых карбонатных коллекторах. Их успешно применяют в сцементированных песчаниках, в состав которых входят карбонатные цементирующие вещества. Наиболее распространенным методом химического воздействия на ПЗП является солянокислотная и глинокислотная обработка, также применяются пенокислотные и термокислотные обработки.

Солянокислотная обработка. Солянокислотная обработка (СКО) скважин основана на способности соляной кислоты проникать в глубь пласта, растворяя карбонатные породы. В результате на значительное расстояние от ствола скважин простирается сеть расширенных каналов, что значительно увеличивает фильтрационные свойства пласта и приводит к повышению продуктивности скважин.

Глинокислотная обработка. Глинокислотная обработка (ГКО) наиболее эффективна на коллекторах, сложенных из песчаников с глинистым цементом, и представляет собой смесь плавиковой и соляной кислот. При взаимодействии ГКО с песчаником или песчано-глинистой породой растворяются глинистые фракции и частично кварцевый песок. Глина утрачивает пластичность и способность к разбуханию, а ее взвесь в воде теряет свойство коллоидного раствора.

Пенокислотная обработка. Пенокислотная  обработка скважин применяется для наиболее дальнего проникновения соляной кислоты в глубь пласта, что повышает эффективность обработок. Сущность способа заключается в том, что в призабойную зону пласта вводится не обычная кислота, а аэрированный раствор поверхностно-активных веществ (ПАВ) в соляной кислоте.

Термокислотная обработка. Термокислотная обработка — это комбинированный процесс: в первой фазе его осуществляется тепловая обработка забоя скважины, а во второй — кислотная обработка. При термокислотной обработке для нагрева раствора соляной кислоты используется тепло экзотермической реакции. Для этого применяют специальный забойный наконечник со стержневым магнием. Окончательная температура раствора после реакции 75 — 90С.

Тепловые методы. Тепловые методы воздействия применяются для удаления со стенок поровых каналов парафина и смол, а также для интенсификации химических методов обработки призабойных зон. При этом вязкость нефти снижается, а нефтеотдача увеличивается.

Среди тепловых методов воздействия на нефтяные пласты выделяют два направления:

- закачка в пласты пара  и нагретой воды;

- внутрипластовое горение.

Тепловые методы целесообразно применять в пластах с вязкостью нефти более 50 мПа-с.

Физические методы. Предназначаются для удаления из ПЗП остаточной воды и твердых мелкодисперсных частиц, что в конечном итоге увеличивает проницаемость пород по нефти. Могут использоваться на любом месторождении. Известным методом является обработка призабойной зоны поверхностно-активными веществами (ПАВ).

Физико-химические методы. Использование физико-химических методов повышения нефтеотдачи пластов - одно из наиболее перспективных направлений в процессах разработки нефтяных месторождений.

Научными организациями отрасли разработано, испытано и сдано более 60 технологий с использованием физико-химического воздействия.

Ведущее место в физико-химических методах воздействия на пласт занимает полимерное заводнение.

Получение композиций полимеров в сочетании с различными реагентами существенно расширяет диапазон применения полимеров.

Основное назначение полимеров в процессах увеличения нефтеотдачи пластов - выравнивание неоднородности продуктивных пластов и повышение охвата при заводнении.

Существуют следующие технологии с использованием полимеров:

- полимерное заводнение (закачка оторочки} на неоднородных по проницаемости объектах с высоковязкой нефтью, находящихся в начальной стадии разработки;

- комплексное воздействие  на продуктивные пласты полимерными  гелеобразующими системами в сочетании с интенсифицирующими реагентами (ПАВы, щелочи, кислота) применяется на поздней стадии разработки;

- воздействие на пласт  вязкоупругими составами (ВУС) для выравнивания профиля приемистости и интенсификации добычи нефти;

- циклическое полимерное заводнение с использованием раствора сшитого полиакриламида, содержащего неионогенное ПАВ;

- циклическое воздействие на продуктивный пласт полимерсодержащими поверхностно-активными системами;

- щелочно-полимерное заводнение;

- полимерное воздействие  при закачке в пласт углекислоты.

Одним из эффективных методов физико-химического воздействия на пласт является щелочное заводнение.

Метод основан на снижении поверхностного натяжения на границе нефти с раствором щелочи.

При этом образуются стойкие водонефтяные эмульсии с высокой вязкостью, способные выравнивать подвижность вытесняемого и вытесняющего агентов. Щелочное заводнение эффективно для нефти высокой вязкости и неоднородных пластов.

Для доотмыва остаточной нефти применяется метод закачки больше объемных оторочек поверхностно-активными веществами (ПАВ).

Механические методы. Они направлены на нарушение целостности горных пород за счет расширения существующих или создания новых трещин. Их применение наиболее эффективно в плотных, низкопроницаемых коллекторах. Основной метод механического воздействия – гидравлический разрыв пласта. К ним относятся также гидропескоструйная перфорация, торпедирование скважины, виброобработка, разрыв пласта пороховым газом, разрыв пласта ударной волной (созданием гидродинамического удара столба жидкости в скважине баллоном вакуумного наполнения).

Гидропескоструйная перфорация. В данный момент времени развивается метод гидропескоструйной перфорации. Гидропескоструйную перфорацию (ГПП) применяют при вскрытии плотных коллекторов, как однородных, так и неоднородных по проницаемости перед гидроразрывом пласта для образования трещин в заданном интервале пласта. При гидропескоструйной перфорации разрушение преграды происходит в результате использования абразивного и гидромониторного эффектов высокоскоростных песчано-жидкостных струй, вылетающих из насадок специального аппарата - пескоструйного перфоратора, прикрепленного к нижнему концу насосно-компрессорных труб. Песчано-жидкостная смесь закачивается в НКТ насосными агрегатами высокого давления (до 30МПа), смонтированными на шасси тяжелых автомашин, поднимается из скважины на поверхность по кольцевому пространству [2]. Это сравнительно новый метод вскрытия пласта. В настоящее время ежегодно обрабатываются около 1500 скважин этим методом.

Гидравлический разрыв пласта. Добыча газа и нефти из сланцевых пород стала возможной благодаря появлению новых технологий, которые позволили сделать рывок в добывающей отрасли, лидирующее положение в которой сегодня занимают Соединенные Штаты. Сланцевый бум расширяет границы - на данные ресурсы обратили внимание другие страны. Большое количество сланцевого газа было обнаружено в Австралии, Канаде, Мексике, ЮАР, Аргентине. Но больше всего сланцевых месторождений обнаружено в Китае, который планирует наладить промышленную добычу уже к концу 2015 года.

Для извлечения нетрадиционного сланцевого газа и сланцевой нефти, используется способ гидравлического разрыва пласта (ГРП). Гидравлический разрыв пласта в настоящее время является самым эффективным методом повышения нефтеотдачи и интенсификации притока. Он оказывает воздействие не только на призабойную зону пласта, но и способствует повышению нефтеотдачи.

При ГРП создается система глубокопроникающих трещин, в результате чего значительно увеличивается дренируемая скважиной зона и повышается производительность скважин.

Продолжительность эффекта от ГРП достигает 3-5 лет, коэффициент успешности - 85%.

Гидравлический разрыв пласта в последнее время стал наиболее предпочтительным методом извлечения нетрадиционных ресурсов нефти и газа в США. Некоторые специалисты считают, что в будущем на ГРП в Северной Америке будет приходиться почти 70% добычи природного газа.

Среди европейских стран большие запасы имеет Украина (3,6 трлн кубометров Франция (3,8 трлн кубометров) и Польша (4,2 трлн кубометров).

Сосредоточены сланцевые запасы неравномерно - среди европейских обладателей газа можно выделить Норвегию, Францию, Германию, Австрию, Литву, Чехию, Великобританию и Польшу. В двух последних активно ведется лицензирование участков и разведочное бурение. Однако коммерческой добычи не ведется ни в одной стране Европы - рынок слаборазвит, высока стоимость бурения и сопутствующих услуг.

Информация о работе Выбор параметров оборудования при гидравлическом разрыве пласта