Смазочные масла для ДВС

Автор работы: Пользователь скрыл имя, 01 Апреля 2014 в 11:00, контрольная работа

Краткое описание

В качестве базовых масел при производстве смазочных материалов используют минеральные (нефтяные) или синтетические масла-компоненты, для специальных целей применяют также растительные масла. Синтетические масла обычно получают из нефтяного сырья.

Содержание

Введение.........................................................................................................................................2
СПОСОБЫ ПОЛУЧЕНИЯ МАСЕЛ ............................................................................................2
МЕТОДЫ ОЧИСТКИ МАСЕЛ ....................................................................................................4
ОСНОВНЫЕ СВОЙСТВА МАСЕЛ ............................................................................................5
КЛАССИФИКАЦИЯ МАСЕЛ » ГОСТ.......................................................................................8
ТРАНСМИССИОННЫЕ МАСЛА .............................................................................................10
Список использованной литературы......

Прикрепленные файлы: 1 файл

Смазочные масла для ДВС.docx

— 195.87 Кб (Скачать документ)

СОДЕРЖАНИЕ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение

 

В качестве базовых масел при производстве смазочных материалов используют минеральные (нефтяные) или синтетические масла-компоненты, для специальных целей применяют также растительные масла. Синтетические масла обычно получают из нефтяного сырья.

Минеральные масла

 

    Высококачественное минеральное базовое масло является надежной предпосылкой для получения современных смазочных материалов. Такие базовые масла-компоненты обладают стабильными свойствами, в частности высокой приемистостью к присадкам, обеспечивая эффективность их действия, а также хорошими смазочными свойствами, обеспечивая гидродинамический режим смазывания в обычных эксплуатационных условиях в широком диапазоне рабочих температур при условии выбора подходящей вязкости. Однако на базе минерального масла трудно, а иногда и невозможно разработать смазочный материал, обладающий отличными свойствами при низких температурах и в то же время сохраняющий достаточно высокие смазочные свойства и при высоких эксплуатационных температурах.

Гидрокрекинговые (гидрокрекинг минерального масла)

Частично синтетические (полусинтетические) масла

 

    Свойства минеральных масел можно улучшать заменой части минерального масла на синтетические компоненты. Таким образом можно производить обладающие хорошими свойствами при низких температурах, круглогодичные масла SAE 5W-XX, которые трудно производить на базе одного только минерального масла.

Синтетические масла

 

    С помощью синтетических базовых масел можно улучшить свойства смазочных материалов. Однако само по себе применение синтетического базового масла не всегда гарантирует высокие эксплуатационные свойства товарного продукта. Для достижения этой цели требуется тщательный подбор компонентов и оптимизация рецептуры продукта. Поэтому возможна весьма большая разница в стоимости "однотипных" синтетических масел.  
    Синтетические масла позволяют достичь следующих свойств:  
- Отличные свойства при низких температурах, в т. ч. легкий запуск двигателя и надежное смазывание в холодных условиях;  
- Отличные функциональные свойства при высоких температурах, в частности, стабильность против окисления, низкая летучесть и расход масла;

СПОСОБЫ ПОЛУЧЕНИЯ МАСЕЛ

Смазочные масла получают из той части нефти, которая остается после отгонки топливных фракций. Эта часть нефти называется мазутом.  
    Если нагревать мазут при атмосферном давлении, то многие индивидуальные углеводороды начинают разлагаться при более низкой температуре, чем их температура кипения. При понижении давления понижается температура кипения, что позволяет выделить нужные фракции. Процесс этот называется вакуумной разгонкой. Для его реализации сооружаются специальные установки, позволяющие из мазута получать различные по вязкости масла. Особенно четко удается произвести разгонку в установках с двукратным испарением, применяемым в современных нефтеперерабатывающих комплексах. Эти масла называют дистиллятными маслами. Их получение предусматривает перегонку или испарение с последующей конденсацией отдельных фракций жидкостей или их смесей (в данном случае нефти или отдельных ее фракций).  
    В результате вакуумной перегонки получают базовые дистиллятные масла, а оставшиеся продукты (полугудрон и гудрон) используют для получения остаточных масел. Характерной особенностью дистиллятных масел являются их хорошие вязкостно-температурные свойства и высокая термоокислительная стабильность. Но в этих маслах мало соединений, обладающих высокой маслянистостью, т. е. прочностью масляной пленки.  
    Остаточные масла, наоборот, обладают высокой естественной маслянистостью, но плохими низкотемпературными и вязкостно-температурными свойствами. Высокая маслянистость остаточных масел связана с находящимися в них продуктами окислительной полимеризации (нефтяными смолами).  
    Существуют две схемы переработки мазута - топливная и масляная. При топливной получают только одну фракцию (350-500°С), используемую обычно как базовый продукт для каталитического крекинга или гидрокрекинга. При масляной переработке - три фракции: легкие дистиллятные масла (выкипающие при 300-400°С), средние дистиллятные масла (выкипающие при 400-450°С) и тяжелые дистиллятные масла (выкипающие при 450-500°С).  
    Для получения товарных марок масла подвергают сложным технологическим операциям. Для удаления нежелательных примесей масло очищают. Из него удаляют продукты окислительной полимеризации, органические кислоты, нестабильные углеводороды, серу и ее соединения. Для улучшения низкотемпературных свойств масла подвергают депарафинизации и деасфальтизации. Очищенные продукты при необходимости смешивают для получения нужного уровня вязкости. Дистиллятные масла используют для приготовления масел, от которых не требуется особо высокой естественной прочности масляной пленки. Остаточные - для масел, высокая маслянистость которых имеет особое значение. Например, для дизельных масел обычно смешивают дистиллятные и остаточные масла в необходимой пропорции.  
    Масла, используемые в качестве основных моторных масел, называют базовыми маслами. Например, для зимних и летних моторных масел выпускают следующие базовые масла:  
М-6 - дистиллятное;  
М-8 - дистиллятное с добавлением не менее 14 % остаточного компонента;  
М-11 - смесь дистиллятного и не менее 30 % остаточного компонента;  
М-14 - смесь дистиллятного и не менее 40 % остаточного компонента;  
М-16 - смесь дистиллятного и не менее 50 % остаточного масла;  
М-20 - состоит только из остаточных масел.  
    Для получения всесезонных масел или масел для северных и арктических районов используют в качестве базовых масел глубоко депарафинизированные дистиллятные масла малой вязкости (веретенное АУ, АС-5 и др.).

МЕТОДЫ ОЧИСТКИ МАСЕЛ

 

    Технология очистки базовых масел влияет на их свойства. Применяют следующие методы очистки масел.  
    1. Выщелачивание. Это самый простой способ. Масло обрабатывают раствором щелочи (NaОН), которая нейтрализует органические кислоты. Продукты окислительной полимеризации (нефтяные смолы и другие вредные примеси) при щелочной очистке не удаляются, поэтому этот способ для моторных масел не применяют.  
    2. Кислотно-щелочная и кислотно-контактная очистка. При этом методе очистки основным реагентом, входящим в соединения с нежелательными примесями, является серная кислота, которую добавляют в дистиллятное масло до 6%, а в остаточное - до 10%.  
    Серная кислота разрушает смолисто-асфальтовые и ненасыщенные соединения, которые вместе с непрореагировавшей кислотой выпадают в осадок, образуя кислый гудрон. Наиболее ценные для масел циклановые углеводороды серной кислотой не затрагиваются и после отделения кислого гудрона промываются водным раствором щелочи, которая нейтрализует остатки серной кислоты и кислого гудрона. Очистка заканчивается промывкой масла водой и просушиванием перегретым паром или горячим воздухом.  
    Для предотвращения возможности образования стойких водомасляных эмульсий обработку щелочью заменяют контактным фильтрованием с использованием отбеливающих глин, обладающих большой адсорбционной способностью поглощать полярно-активные вещества, к которым относятся продукты взаимодействия с серной кислотой.  
    Кислотную очистку с контактным фильтрованием через отбеливающие земли называют кислотно-контактной очисткой.  
    Применение для очистки моторных масел серной кислоты имеет существенные недостатки: при современных масштабах производства моторных масел это приводит к огромным безвозвратным расходам серной кислоты - ценного продукта, широко используемого во многих химических производствах.  
    Кислый гудрон, который является отходом при этом способе очистки, очень токсичный и вредный продукт; дальнейшее использование его по ряду причин нерентабельно, и его огромные скопления являются источником очень вредного воздействия на окружающую природу.  
    3. Очистка масел селективными растворителями. Это современный и эффективный способ очистки масел.  
    Особенностью этого метода является возможность в процессе очистки многократного использования селективных растворителей. В качестве селективных растворителей применяют фурфурол, фенол и ряд других веществ.  
    Принцип селективной очистки заключается в следующем. Подбирают растворитель, который при определенной температуре и количественном соотношении с очищаемым маслом выборочно (селективно) растворяет в себе все вредные примеси и плохо или совсем не растворяет очищаемый продукт, в данном случае - масло.  
    При смешивании очищаемого масла с селективным растворителем основная часть вредных примесей растворяется и переходит в растворитель, который, не смешиваясь с маслом, легко с ним разделяется при отстаивании. Получается слой очищенного масла (рафинадный слой) и слой растворителя с вредными, удаленными из масла примесями. Этот слой называют экстрактом. Слои разделяют. Слой очищенного масла доочищают отбеливающими глинами, а экстракт подвергают регенерации, при которой селективный растворитель отделяется от вредных продуктов и опять вводится в процесс очистки.  
    Очень важно правильно выбрать как соотношение масла и растворителя, так и температуру, при которой осуществляют процесс очистки. Например, при использовании в качестве селективного растворителя фенола температуру следует поддерживать в диапазоне 50-300°С, а соотношение масла и растворителя 1:1 или 1:2.  
    При применении фурфурола соотношение очищаемого продукта варьируют в зависимости от желаемой глубины очистки очищаемого масла от 1:1,5 до 1:4.  
    Для получения качественной очистки высоковязких остаточных масел используют метод парных растворителей. Причем один из них должен выборочно растворять вредные примеси, а другой - очищаемое масло. Происходит как бы разделение полезного и вредного продукта. При растворении примесей применяют креозол с 30-50% фенола, а при растворении рафината - пропан. С целью поддержания пропана в жидком состоянии очистку производят под давлением до 2 Мпа.  
    В последнее время все шире применяют гидрогенизацию, которая является наиболее совершенным способом очистки масел. Процесс аналогичен гидроочистке топлив. Проводят его под давлением до 2 Мпа в присутствии водорода при температуре 380-400°С.  
    Для улучшения низкотемпературных свойств масел (что имеет особое значение при эксплуатации двигателей зимой, находящихся на открытой стоянке автомобилей и тракторов) подвергают деасфальтизации и депарафинизации. Удаление из масла этих соединений, обладающих высокой температурой застывания, повышает низкотемпературные свойства масел.  
    Деасфальтизацию проводят с помощью жидкого пропана, который под давлением 2-4 Мпа смешивают с очищенным маслом в пропорции до 10:1. Процесс протекает в специальных колоннах. Очищаемое масло поступает в среднюю часть колонны, пропан - в нижнюю. Выводится битум из самого нижнего уровня колонны. Раствор очищенного от асфальта масла выводится из верхней части колонны, после чего очищенное масло отделяется от растворителя.  
    Депарафинизацию масла, т. е. Выделение из него парафина и церезина, производят путем его глубокого охлаждения. Перед охлаждением в масло добавляют растворители и смесь нагревают на 15-20° выше температуры полного растворения парафина и церезина. Затем смесь подвергают охлаждению и фильтрации или центрифугированию. Застывший парафин и церезин остаются на фильтрах. Освобожденное от парафина и церезина масло при его охлаждении в условиях реальной эксплуатации обладает повышенной текучестью, что значительно облегчает пуск двигателя при низких температурах.  
    В последнее время появляются методы очистки масел, основанные на его фильтрации через специальные мембраны, фильтрующие на молекулярном уровне, которые, например, пропускают молекулу углеводородов и задерживают молекулу продуктов окислительной полимеризации и другие нежелательные примеси. Этот метод еще не получил широкого применения при очистке моторных масел.

ОСНОВНЫЕ СВОЙСТВА МАСЕЛ

Плотность и удельный вес

 

    Плотность вещества - это  соотношение его массы к объему (кг/м3), а удельный вес - соотношение массы определенного объема вещества к массе соответствующего объема воды при 20°С. Плотность и удельный вес зависят от температуры.

 

Вязкость

 

Вязкость - это одна из важнейших характеристик масел, которая характеризует внутреннее трение, определяет текучесть и способность обеспечить гидродинамический (жидкостной) режим смазывания. Вязкость зависит от температуры, в диапазоне рабочих температур (обычно от минус 30°С до 150°С) вязкость минеральных масел изменяется в тысячи раз.

    Различают кинематическую  и динамическую (абсолютную) вязкость. Первая, характерная для простых  масел при положительных температурах, определяется в капиллярных вискозиметрах, а вторая - для загущенных (всесезонных) масел и масел при отрицательных  температурах, определяется в ротационных  вискозиметрах, ее величина зависит  не только от температуры, но  и от градиента скорости сдвига.

    Кинематическую вязкость  в технической системе единиц  измеряют в Стоксах (Ст) или сантистоксах (сСт), а в системе СИ в м2/с или в мм2/с.

    Динамическая вязкость  представляет собой произведение  кинематической вязкости на плотность  жидкости, в технической системе  ее измеряют в сантипуазах (сП), а в системе СИ - в миллиПаскаль-секундах (мПас), где 1 сП= 1 мПа-с.

    Моторные масла, как и  большинство смазочных материалов, изменяют вязкость в зависимости  от своей температуры. Чем ниже  температура, тем больше вязкость  и наоборот.

    Всесезонное масло работает  в диапазоне температур от -35 (холодный  пуск зимой) до 150-180ºС (работа двигателя летом под полной нагрузкой), что соответственно вызывает многократное изменение его вязкости.

    Чтобы обеспечить холодный  пуск двигателя (проворачивание  коленвала стартером и прокачивание масла по системе смазки) при низких температурах, вязкость не должна быть очень большой.

    При высоких температурах  масло не должно иметь очень  малую вязкость, чтобы создавать  прочную масляную пленку между  трущимися деталями и необходимое  давление в системе.

    Для обеспечения необходимой  вязкости во всем диапазоне  рабочих температур всесезонные  моторные масла изготавливают  из маловязкой основы и полимерных  загущающих присадок (модификаторов  вязкости). Основа, имеющая небольшую  вязкость, обеспечивает нужные низкотемпературные  характеристики. Молекулы загущающих  присадок представляют собой  “клубки” полимеров (веществ, молекулы  которых состоят из большого  числа повторяющихся звеньев), “набухающие”  при нагревании, что сохраняет  достаточную вязкость при высокой  температуре.

    Вязкость загущенного  всесезонного масла зависит также  и от скорости перемещения  его слоев относительно друг  друга. С ее увеличением вязкость  временно снижается, поскольку “клубок”  полимерной присадки “растягивается”  и оказывает меньшее сопротивление  перемещению слоев.

    Способность снижать  вязкость в зависимости от  скорости уменьшает потери на  внутреннее трение в масле  и, соответственно, потери мощности  двигателя. Например, при движении поршня от верхней или нижней мертвой точки его скорость возрастает и в определенный момент возникает гидродинамический режим смазки (масло полностью разделяет поверхности деталей). Полимерная загущающая присадка в это время понижает вязкость масла, тем самым снижая потери мощности, развиваемой двигателем.

 

Индекс вязкости

 

    Индекс вязкости (сокращенно VI, от английского Viscosity Index) безрамерный показатель характеризует зависимость вязкости масла от изменения температуры. Чем больше индекс вязкости, тем меньше вязкость масла изменяется при колебании температуры. Он зависит от углеводородного состава масла, наличия вязкостных (загущающих) присадок, глубины очистки масляных фракций. Для минеральных масел без вязкостных присадок индекс вязкости составляет 85-100, масла с вязкостными присадками и синтетические масла-компоненты могут иметь индекс вязкости 120-150. У маловязких глубокоочищенных масел индекс вязкости может достигать 200.

 

Температура вспышки

 

    При повышении температуры  из масла выделяются пары, которые  при поднесении открытого огня  вспыхивают. Эта температура называется  температурой вспышки, которую можно  измерять либо в открытом (Cleveland), либо закрытом тигле (Pensky-Martens). Показатель характеризует наличие в масле легкокипящих фракций, он связан с испаряемостью масла в процессе эксплуатации.

 

Температура застывания

 

    Температура застывания - это самая низкая температура, при которой масло еще полностью  не потеряло текучесть при  наклонении пробирки, в которой  его охладили. Температура застывания  характеризует момент резкого  увеличения вязкости при снижении  температуры, или кристаллизации  парафина вместе с повышением  вязкости в такой степени, что  масло становится твердым.

 

Щелочное число (TBN) и кислотное число (TAN)

 

    В процессе эксплуатации  в смазочных маслах накапливаются  кислые и/или щелочные продукты, которые образуются в результате  окисления, разрушения молекул базового  масла и присадок, загрязнения масел, в том числе, накопления в них продуктов неполного сгорания топлива, сажи. Общее щелочное число (TBN) и общее кислотное число (TAN) анализируются в лабораторных условиях. TBN выражается через количество гидроокиси калия в миллиграммах, эквивалентное количеству всех щелочных компонентов, содержащихся в 1 г. масла (мг КОН/г). TAN выражается через количество гидроокиси калия в мг, необходимое для нейтрализации кислых продуктов, содержащихся в 1 г. масла (мг КОН/г).

КЛАССИФИКАЦИЯ МАСЕЛ » ГОСТ

 

 

Классификация моторных масел согласно ГОСТ 17479.1-85 подразделяет их на классы по вязкости и группы по значению и уровням эксплуатационных свойств. Ниже приведено описание отечественной классификации моторных масел с учетом Изменения №3 к ГОСТ 17479.1-85, которым увеличено число классов вязкости и изменены их границы, введены новые группы по назначению и уровням эксплуатационных свойств, а также некоторые наименования. Например, по всему тексту стандарта масла для карбюраторных двигателей называются более точным термином - маслами для бензиновых двигателей.  
    ГОСТ 17479.1-85 предусмотрено обозначение моторных масел, сообщающее потребителю основную информацию об их свойствах и области применения. Стандартная марка включает следующие знаки:  
- букву М (моторное), цифру или дробь, указывающую класс или классы вязкости (последнее для всесезонных масел), одну или две из первых шести букв алфавита, обозначающих уровень эксплуатационных свойств и область применения данного масла.  
    Универсальные масла обозначают буквой без индекса или двумя разными буквами с разными индексами:  
- Индекс 1 - присваивают маслам для бензиновых двигателей.  
- Индекс 2 - дизельным маслам.

Классы вязкости моторных масел

Класс вязкости

Кинематическая вязкость, мм2/с, при температуре

100°С

-18°С, не более

33

3,8

12500

43

4.1

2600

53

5.6

6000

63

5.6

10400

6

св.5,6 до 7.0 включ.

10400

8

-7,0 до 9.3 -

10400

10

- 9,3 до 11.5 -

10400

12

- 11,5 до 12.5 -

10400

14

-12,5 до 14.5 -

10400

16

-14,5 до 16.3 -

10400

20

-16,3 до 21.9 -

10400

24

-21,9 до 26.1 -

10400

33/8

-7,0 до 9.3 -

1250

43/6

-5,6 до 7.0 -

2600

43/8

-7,0 до 9.3 -

2600

43/10

-9,3 до 11.5 -

2600

53/10

-9,3 до 11.5 -

6000

53/12

-11,5 до 12.5 -

6000

53/14

-12,5 до 14.5 -

6000

63/10

-9,3 до 11.5 -

10400

63/14

-12,5 до 14.5 -

10400

63/16

-14.5 до 16.3 -

10400


Группы моторных масел по назначению

Группа масла по эксплуатационным свойствам

Рекомендуемая область применения

А

-

Нефорсированные бензиновые двигатели и дизели

Б

Б1

Малофорсированные бензиновые двигатели, работающие в условиях, которые способствуют образованию высокотемпературных отложений и коррозии подшипников

Б2

Малофорсированные дизели

В

В1

Среднефорсированные бензиновые двигатели, работающие в условиях, которые способствуют окислению масла и образованию отложений всех видов

В2

Среднефорсированные дизели, предъявляющие повышенные требования к антикоррозионным, противоизносным свойствам масел и способности предотвращать образование высокотемпературных отложений

Г

Г1

Высокофорсированные бензиновые двигатели, работающие в тяжелых эксплуатационных условиях, способствующих окислению масла, образованию отложений всех видов и коррозии

Г2

Высокофорсированные дизели без наддува или с умеренным наддувом, работающие в эксплуатационных условиях, способствующих образованию высокотемпературных отложений

Д

Д1

Высокофорсированные бензиновые двигатели, работающие в эксплуатационных условиях, более тяжелых, чем для масел группы Г1

Д2

Высокофорсированные дизели с наддувом, работающие в тяжелых эксплуатационных условиях или когда применяемое топливо требует использования масел с высокой нейтрализующей способностью, антикоррозионными и противоизносными свойствами, малой склонностью к образованию всех видов отложений

Е

Е1

Высокофорсированные бензиновые двигатели и дизели, работающие в эксплуатационных условиях, более тяжелых, чем для масел групп Д1 и Д2

Е2

Отличаются повышенной диспергирующей способностью, лучшими противоизносными свойствами


    

Так, марка М-6з/10В указывает, что это моторное масло всесезонное, универсальное для среднефорсированных дизелей и бензиновых двигателей (группа В): 
- М-4з/8-В2Г1 - моторное масло всесезонное, универсальное для среднефорсированных дизелей (группа В2) и высокофорсированных бензиновых двигателей (группа Г1); 
- М-14Г2 (цс) - моторное масло класса вязкости 14, предназначено для высокофорсированных дизелей без наддува или с умеренным наддувом. В данном случае после основного обозначения в скобках указана дополнительная характеристика области применения ("цс" означает циркуляционное судовое); 
- М-14Д (цл20) - моторное масло для высокофорсированных дизелей с наддувом, работающих в тяжелых эксплуатационных условиях, (цл20) - применимое в циркуляционных и лубрикаторных смазочных системах и имеющее щелочное число 20 мг КОН/г.

Информация о работе Смазочные масла для ДВС