Автор работы: Пользователь скрыл имя, 25 Февраля 2014 в 15:37, курсовая работа
Управление движения суппорта осуществляется гидравлической системой. Она управляется в ручную станочником. Рабочий, нажимая на педаль, управляет передвижением суппорта. Гидравлическая система должна быть малогабаритной, создавать необходимое усилие на штоке, создавать максимальное время и скорость срабатывания.
Достоинства гидропривода:
- компактность;
- передаются большие усилия и мощности;
- бесступенчатое регулирование в плавных и широких пределах;
Введение
1. Принимаемая гидравлическая схема, её описание и принцип работы
2. Определение основных параметров гидропривода
2.1 Определение давлений в полостях нагнетания и слива
2.2 Определение параметра гидроцилиндра
2.3 Определение определения давлений в полостях силового цилиндра
3. Выбор гидронасоса
3.1 Расчет диаметра трубопровода и скорости движения жидкости
4. Выбор гидроаппаратуры
4.1 Определение действительных перепадов давлений
5. Определение КПД гидропривода
5.1 Определение КПД гидропривода при постоянной нагрузке
5.2 Определение КПД гидропривода при работе в цикличном режиме
6. Расчет объема гидробака
Заключение
Библиографический список
Курсовая работа: Разработка гидропривода - торцовочного круглопильного станка
Курсовая работа: Разработка гидропривода - торцовочного круглопильного станка
Федеральное агентство по образованию
Уральский государственный лесотехнический университет
Кафедра "Станков и Инструментов"
Расчетно–графическая работа
Разработка гидропривода – торцовочного круглопильного станка
Екатеринбург 2006
Содержание
Введение
1. Принимаемая гидравлическая схема, её описание и принцип работы
2. Определение основных параметров гидропривода
2.1 Определение давлений в полостях нагнетания и слива
2.2 Определение параметра гидроцилиндра
2.3 Определение определения давлений в полостях силового цилиндра
3. Выбор гидронасоса
3.1 Расчет диаметра трубопровода и скорости движения жидкости
4. Выбор гидроаппаратуры
4.1 Определение действительных перепадов давлений
5. Определение КПД гидропривода
5.1 Определение КПД гидропривода при постоянной нагрузке
5.2 Определение КПД гидропривода при работе в цикличном режиме
6. Расчет объема гидробака
Заключение
Библиографический список
Введение
Станки для поперечной распиловки типа ЦПА-40 предназначены для распиловки поперёк волокон досок и брусков на чистовые и черновые заготовки определённой длины или для удаления из них дефектов. Данный тип станка с неподвижным суппортом, подача осуществляется суппортом на неподвижную заготовку. При торцовке в размер используют базирующие упоры. Пильный суппорт перемещается с прямолинейным перемещением по направляющим и в шарнирно-рычажной системе.
Управление движения суппорта осуществляется гидравлической системой. Она управляется в ручную станочником. Рабочий, нажимая на педаль, управляет передвижением суппорта. Гидравлическая система должна быть малогабаритной, создавать необходимое усилие на штоке, создавать максимальное время и скорость срабатывания.
Достоинства гидропривода:
- компактность;
- передаются большие усилия и мощности;
- бесступенчатое регулирование в плавных и широких пределах;
- простота преобразования вращательных движений в поступательные;
- возможность частичного реверсивного;
- высокая скорость
1. Принимаемая гидравлическая схема, её описание и принцип работы
Рисунок 1. Предлагаемая схема гидропривода круглопильного торцовочного станка: 1-гидроцилиндр; 2-золотник; 3-манометр; 4-фильтр; 5-предохранительный клапан; 6-насос
Управление гидроцилиндром (1) осуществляет от трёхпозиционного распределителя (2), который обеспечивает рабочий ход, реверсирование, холостой ход и стоп суппорта в конце холостого хода. Для включения подачи рабочий нажимает ножной педалью конечный выключатель. Включается электромагнит и переводит распределитель в крайнее левое положение. При этом обе полости гидроцилиндра соединяются с напорной магистралью. Из-за создаваемой разности усилий с правой и левой сторон поршня он двигается в сторону штоковой полости – суппорт совершает рабочий ход из левой полости гидроцилиндра масло переливается в правую полость.
В конце рабочего хода распределитель переключается в крайнее правое положение. Бесштоковая полость гидроцилиндра соединяется со сливом. Суппорт совершает обратный ход.
В конце холостого хода распределитель переключается в среднее положение. При этом подача масла в правую полость закрывается, а напорная магистраль переключается на слив. Суппорт останавливается, гидронасос разгружается. Дроссель обеспечивает регулирование скорости подачи суппорта в пределах 5-36 м/мин.
Таблица 1.1 Исходные данныеПоказатель Обозначение
Усилие на штоке R кН 12
Ход поршня S м 0,5
Время рабочего хода
tp с 5
Отношение времени х.х. к р.х.
tx /tp 0,8
Температура рабочей жидкости
Tm
0С 55
Температура окр. среды
To
0С 15
Длины трубопроводов
l1, l2 м 2, 3
2. Определение основных параметров гидропривода
2.1 Определение давлений в полостях нагнетания и слива
Применительно к разрабатываемому гидроприводу давление P1 в поршневой полости определяется по формуле
P1 = PH – ΔPзол – ΔPФ – ΔP1;
а давление P2 в штоковой полости
P2 = ΔPдр + ΔP2 + ΔPпр + ΔPзол
где PH - давление развиваемое насосом, МПа;
ΔPзол - перепады давлений на гидрораспределителе, МПа;
P1 и P2 - перепады давлений в трубопроводах l1 и l2, МПа;
ΔPдр - перепад давления на дросселе, МПа;
ΔPФ - перепад давления на фильтре, МПа;
ΔPпр – перепад давления в предохранительном клапане, МПа.
Применительно к данному гидроприводу перепады давлений на золотнике, дросселе и фильтре примем следующим образом
ΔPзол = 0,2 МПа;
ΔPдр = 0,3 МПа;
ΔPФ = 0,1 МПа;
ΔPпр = 0,15 МПа;
Так как перепады давлений в трубах на первой стадии расчета определить нельзя, то примем предварительно ΔP1 = ΔP2 = 0,2 МПа.
P1 = 1,6 – 0,1 – 0,2 – 0,2=1,1 МПа;
P2 = 0,3 + 0,2 + 0,15 + 0,2=0,85 МПа.
2.2 Определение параметра гидроцилиндра
Определим площади гидроцилиндра F1 и F2, используя соотношения
где υПР и υПХ - скорости поршня при рабочем и холостом ходе.
Расход жидкости, поступающий в силовой цилиндр можно определить по формуле
Q = υ П · F
Считаем, что расход жидкости, поступающий в силовой цилиндр при рабочем и холостом ходе одинаков, то
Q = υПP · F1 и Q = υПX · F2
поэтому
Из этого следует, что:
откуда
Следовательно, выражение площади поршня в штоковой полости примет вид:
Диаметр поршня будет равен:
Сила трения T увеличивается с ростом давления жидкости в цилиндре и лежит в диапазоне T = (0,02...0,1)R
Определим диаметр поршня D.
D==0,17 м
Полученный диаметр сравниваем со стандартным рядом: 40, 50, 60, 70, 80, 90, 100, 110. Так как у нас значение превышает 150 мм то повышаем давление Рн до 3,2 МПа, тогда Р1=3,2-0,1-0,2-0,2=2,7 МПа
D==0,08 м
Принимаем диаметр цилиндра 80 мм.
d==35 (мм)
Толщину δ стенки гидроцилиндра можно определить по формуле
Допускаемые напряжения на растяжение принимаются равными для стали [σ] = 50…60 МПа (1·106 Н/м2).
=2 мм.
2.3 Определение давлений в полостях силового цилиндра
Обозначим полезные площади силового цилиндра через F1 и F2, а давления в этих полостях через P1 и P2
,
где D и d - диаметры силового цилиндра и штока поршня.
Уравнение равновесия поршня силового цилиндра, пренебрегая силами инерции, имеет вид
P1 F1 = P2 F2 + R + T
где T - сила трения, приложенная к поршню.
Определим площади гидроцилиндра F1 и F2.
F1==0.005 м2;
F2== 0.004 м2.
3. Выбор гидронасоса
Определяем расход жидкости, поступающей в левую поршневую полость силового цилиндра,
где υПР - скорость перемещения поршня, м/с.
υПР=
υПР==0,1 м/с;
ΔQЦ1=0,1·=9,6 л/мин=0,00016 м3/с.
Подача насоса с учетом утечек рабочей жидкости определится по формуле
QH = (QЦ1 + ΔQЦ)·z + ΔQзол
где ΔQЦ - утечки жидкости в силовом цилиндре;
ΔQзол - утечки в золотнике;
z - число гидроцилиндров.
Утечки в силовом цилиндре ΔQЦ и в распределителе ΔQзол рассчитываются по формулам:
Принимаем Р*=6,3 Мпа, ΔQ*Ц=0,05 л/мин, ΔQзол=0,1 л/мин.
ΔQЦ==0,02 л/мин;
ΔQзол ==0,04 л/мин.
QH = (9,6 + 0,02 )·1 + 0,04=9,66 л/мин.
Рабочий объем насоса
где n - частота вращения ротора насоса, принимаем n=950 мин-1; η0 - объемный КПД насоса, принимаем η0=0,9.
q==0.011 л =11см3.
По рабочему объёму и подаче выбираем насос Г 12-32 АМ
Таблица 3.1 Основные параметры насоса Г 12-32 АМОсновные параметры Г12-32 АМ
Рабочий объем q, см3 16
Номинальная подача Q*, л/мин 12
Номинальное давление P*, МПа 6,3
Объемный КПД η0* при P* = 2,5 МПа 0,81
Полный КПД, η 0,7
Действительный объемный КПД можно найти из выражения
η0==0.76
Вычислив η0, определяется рабочий объем q, и по нему подбираем насос. После этого уточнятся расход жидкости, сбрасываемый через предохранительный клапан в приемный бак
ΔQПК = qnη0 – z(QЦ1 + ΔQЦ) –ΔQ зол.
ΔQПК = 0.016·950·0.76 – 1·(9.6 + 0.02) –0.04=2 л/мин.
3.1 Расчет диаметра трубопровода и скорости движения жидкости
Находим внутренний диаметр труб, с помощью которых соединяются гидроаппараты. Для этого зададимся скоростью движения жидкости согласно требованиям ГОСТ 16516-80. Стандартные значения внутреннего диаметра труб: 1; 1,6; 2; 2,5; 3; 4; 5; 6; 8; 10; 12; 16; 20; 25; 32; 40; 50; 63; 80; 100; 125; 160; 200; 250.
Найденное значение диаметра dТ округляется до ближайшего стандартного.
dТ==0,008 м.
Уточнив значение dТ, находим среднюю скорость движения жидкости в трубах
υрж1==3,18 м/с.
Зная расходы и ориентировочные величины давлений, переходят к выбору гидроаппаратуры.
4. Выбор гидроаппаратуры
Согласно выбранной схемы гидропривода, а, также учитывая значения расходов и давлений, производят подбор гидроаппаратуры. Для разработанной гидросхемы необходимо выбрать предохранительный клапан, распределитель, дроссель и фильтр. Все данные по выбранной аппаратуре сводятся в таблицу 4.1.
Таблица 4.1 Характеристики выбранной
гидроаппаратурыГидроаппаратура
Расход, м3/с Давление, МПа Перепад давлений, МПа
Гидрораспределитель Г74-12 0,
Предохранительный клапан Г52-12 0,0000167-0,
Дроссель Г77-14 0,0000117 До 5 -
Филитр 0,08 Г41-13 0,0003 6,4 0,2
Описание дросселя типа Г77-14
Гидродроссель - гидроаппарат управления расходом, предназначенный для создания сопротивления потоку рабочей среды.
В машинах лесной промышленности основное применение находят нелинейные дроссели. Изменение перепада давления, а, следовательно, и изменение расхода жидкости в нелинейных гидродросселях достигается либо изменением площади проходного сечения - щелевые, крановые, золотниковые дроссели, либо числа местных сопротивлений - пластинчатые дроссели.
Режим движения в нелинейных дросселях пропорционально квадрату скорости жидкости, поэтому их называют также квадратичным. Потери на трение в квадратичных дросселях практически отсутствуют, благодаря чему расход через дроссель не зависит от вязкости жидкости, и, следовательно, характеристика дросселя остаётся стабильной в широком диапазоне эксплутационных температур рабочей жидкости. На рисунке показан дроссель типа Г77-1.
Рабочая жидкость подводится в одно из отверстий 3 в корпусе 4, далее через отверстие 5 поступает в центральный канал 6 запорно-регулирующего элемента (пробки) 7, опускается вниз и выходит из дросселя через щель 8 в запорно-регулирующем элементе 7.
Рисунок 4.1 Дроссель типа Г77-1
Описание предохранительного клапана типа Г52-12
Гидроклапаном называется гидроаппарат, в котором размеры рабочего проходного сечения изменяются от воздействия потока проходящей рабочей среды.
Классификация гидроклапанов производится по их назначению в гидросистеме и по воздействию потока рабочей жидкости на запорно-регулирующий элемент.
По назначению в гидросистеме различают:
- гидроклапаны давления – регулирующие гидроаппараты, предназначенные для управления давлением рабочей среды (напорные, редукционные, разности давления, соотношения давления в подводимом и отводимом потоках рабочей жидкости);
- гидроклапаны, управляющие потоком рабочей жидкости (обратные гидроклапаны, гидрозамки, делители и сумматоры потоков, гидроклапаны последовательности и др.)
По воздействию потока рабочей жидкости на запорно-регулирующий элемент гидроклапаны делятся на клапаны прямого и непрямого действия.
В гидроклапанах прямого действия размеры рабочего проходного сечения изменяются в результате непосредственного воздействия потока рабочей среды на запорно-регулирующий элемент. В гидроклапанах непрямого действия размеры рабочего проходного сечения изменяются основным запорно-регулирующим элементом в результате воздействия потока рабочей среды на вспомогательный запорно-регулирующий элемент. На рисунке 4.2 показан предохранительный клапан типа Г52-2. Он состоит из корпуса 1, крышки 4, золотника основного запорно-регулирующего элемента 7 в виде шарикового клапана, нерегулируемой пружины 3 и регулируемой винтом 5 пружины 6. Полость высокого давления А соединена с полостями Б и В капиллярным каналом 9. Если при работе машины давление в гидросистеме не превышает давления, на которое настроена пружина 6 шарикового клапана 7, то клапан закрыт. В полостях А, Б и В устанавливается одинаковое давление, золотник 2 основного запорно-регулирующего элемента находится в равновесии и под воздействием усилия нерегулируемой пружины 3 занимает крайнее нижнее положение (как показано на рис. 4.2). При этом полость высокого давления А отделена от полости слива С. Если усилие на шарик от давления в полости Б больше, чем усилие, на которое настроена пружина 6, то шарик отжимается от седла клапана и рабочая жидкость а небольшом количестве из полости через отверстие 8 в крышке 4 и корпусе 1 начинает поступать в полость слива С.
Информация о работе Разработка гидропривода – торцовочного круглопильного станка