Автор работы: Пользователь скрыл имя, 14 Сентября 2014 в 18:17, реферат
Одно из самых опасных разрушающих явлений для стального трубопровода является – коррозия, в некоторых зонах она может достигать 2-4 мм/год. В связи с этим строительство магистрального трубопровода обязательным образом включает в себя мероприятия по защите сооружения от коррозии, а именно – его изоляции. Изоляция трубопровода бывает пассивная (нанесение изоляционного покрытия на заводе или на трассе) и активная (электрохимическая защита). Причем пассивная изоляция действует с начала эксплуатации трубопровода, а активная включается через некоторое время в зависимости от агрессивности почвы.
В данной работе подробно рассмотрен один из способов электрохимической защиты трубопровода от почвенной коррозии, - протекторная защита.
Содержание
Одно из самых опасных разрушающих явлений для стального трубопровода является – коррозия, в некоторых зонах она может достигать 2-4 мм/год. В связи с этим строительство магистрального трубопровода обязательным образом включает в себя мероприятия по защите сооружения от коррозии, а именно – его изоляции. Изоляция трубопровода бывает пассивная (нанесение изоляционного покрытия на заводе или на трассе) и активная (электрохимическая защита). Причем пассивная изоляция действует с начала эксплуатации трубопровода, а активная включается через некоторое время в зависимости от агрессивности почвы.
В данной работе подробно рассмотрен один из способов электрохимической защиты трубопровода от почвенной коррозии, - протекторная защита.
Под коррозией металлических трубопроводов понимается самопроизвольное разрушение их под действием различных факторов химического или электрохимического характера, определяемых окружающей трубопровод средой.
Химическая коррозия – самопроизвольное окисление металла под воздействием окружающей среды токонепроводящей среды. При этом продукты коррозии образуются непосредственно на участке поверхности металла, подвергающегося разрушению.
Электрохимическая коррозия – коррозия металлов в электолитах, сопровождающаяся образованием электрического тока. При этом взаимодействие металла с окружающей средой разделяется на анодный и катодный процессы, протекающие на различных участках поверхности раздела металла и электролита.
Почвенная коррозия относится к электрохимической коррозии, однако ей присущи особенности:
1) связь влаги с окружающей средой:
- физико-механическая связь (свободная вода в порах грунта);
- физико-химическая связь (влага
адсорбированная на
- химическая (гидратированная) влага, входящая в химическое соединение Fe∙nH2;
2) неоднородность структуры и состава грунта, как в микро-, так и в макромасштабах;
3) почти полное отсутствие
4) неодинаковый доступ кислорода воздуха к поверхности металла.
Основные причины возникновения коррозионных элементов на трубопроводе
Условия возникновения коррозии являются:
- наличие разнородности
- наличие разнородных грунтовых участков;
- наличие средств проводящих электрический ток.
Причины возникновения коррозионных элементов на трубопроводе:
1) микронеоднородность состава металла (присутствие механических примесей в металле труб).
2) Наличие окалины на
3) Наличие продольных и
4) Различные напряженные
5) Различная глубина заложения трубопровода.
6) Чередование грунтов с
7) Температура. С увеличением температуры
происходит увеличение
Протекторные установки предназначены:
- для защиты от почвенной
коррозии участков большой
- на участках, защищенных СКЗ, -
в местах неполной защиты, для
обеспечения необходимого
- для защиты от почвенной коррозии патронок (кожухов) на переходах через железные и автомобильные дороги;
- на участках блуждающих токов
– в качестве земляных
Протекторы также устанавливают на изолирующих фланцах для снятия анодных зон, на электрических перемычках при совместной защите подземных сооружений для устранения электрохимического взаимодействия между ними, для защиты металлических подземных емкостей и др.
Средний срок службы протектора – 5-10 лет.
Таким образом, положительные стороны данного способа ЭХЗ:
- эффективность;
- простота устройства;
- удобность эксплуатации;
- автономность.
Отрицательные стороны – снижение эффективности при значительном удельном сопротивлении грунта, окружающего протектор, и использование дефицитных материалов.
Рис.1. Принципиальная схема протекторной установки:
1 – трубопровод; 2 – точка дренажа;
3 – изолированный
4 – протектор; А – анод; К – катод.
Протекторная защита трубопроводов основана на принципе работы гальванических пар. При защите подземных металлических объектов с помощью протекторных установок к трубопроводу подключают протектор (анодный электрод), имеющий более низкий электрохимический потенциал, чем потенциал металла трубы. Создаются условия, при которых трубопровод выступает в качестве катода, а электрод (протектор) в качестве анода, в результате добиваются прекращения коррозионного разрушения трубопровода за счет интенсивного разрушения протектора.
При устройстве протекторной защиты к стальному трубопроводу подключают металлический протектор. В результате этого образуется гальванический элемент «труба-протектор», в котором трубопровод является катодом, протектор – анодом, а почва – электролитом.
Таким образом, протекторная защита имеет те же основы, что и катодная защита. Разница заключается в том, что необходимый для защиты ток создается крупным гальваническим элементом, поэтому протекторную защиту иначе называют защитой гальваническими анодами. При этом положительный полюс находится на защищаемой поверхности, а отрицательный – на разрушаемом аноде, то есть в порядке, обратном порядку при катодной защите с наложенным током от внешнего источника.
Требования, предъявляемые к материалу протектора:
- материал протектора должен иметь более отрицательный потенциал, чем потенциал трубопровода;
- на поверхности протектора
не должны образовываться
- материал протектора должен иметь высокий КПД, т.к. происходит самокоррозия протектора;
- материал протектора должен
иметь высокую удельную
- количество электроэнергии с
единицы веса (токоотдача) должна
быть максимальной при
В качестве материалов протекторов используют алюминий, цинк и магний, а так же сплавы на их основе.
Таблица 1
Физико-химические свойства металлов,
используемых в качестве протекторов
Показатели |
Магний |
Цинк |
алюминий |
Относительная молекулярная масса |
24,32 |
65,38 |
26,97 |
Валентность |
2 |
2 |
3 |
Электрохимический эквивалент, кг/(А∙год) |
3,97 |
10,7 |
2,94 |
Токоотдача, (А∙час)/кг |
2200 |
820 |
2980 |
Равновесный электродный потенциал по нормальному водородному электроду, В |
-2,34 |
-0,76 |
-1,67 |
Магний, относится ко второй группе периодической системы элементов Д. И. Менделеева. Металлы этой группы характеризуются относительно высокой химической и электрохимической активностью. Интенсивность коррозии металлов этой группы во многом зависит от растворимости их гидроокисей. Более умеренная по сравнению с другими металлами коррозия магния в ряде случаев связана с плохой растворимостью окисных и гидроокисных пленок, образующихся на его поверхности.
Технический и даже чистый магний хорошо растворяется в водных растворах кислот, бурно выделяя водород и значительное количество тепла. Так как гидроокись магния не обладает амфотерными свойствами, то скорость коррозии этого металла в водных растворах щелочей не увеличивается, а уменьшается.
В воде магний корродирует медленно, причем скорость коррозии повышается с увеличением содержания в воде солей.
В нейтральных водных средах основным продуктом коррозии магния является гидроокись, в растворах же кислот образуются соли магния. Наиболее растворимыми солями магния (по степени убывания растворимости) являются хлорид, бромид, иодид, сульфат, хромат и нитрат. К плохо растворимым соединениям этого металла относятся сульфид, карбонат, фторид, борат, фосфаты, гидроокись. Гидроокись магния осаждается из водного раствора при рН = 8—11 (в зависимости от концентрации ионов магния).
Потенциал магния в нейтральных водных электролитах и особенно в щелочных растворах оказывается более положительным, чем в кислотных растворах, т. е. растворение в кислых средах окисной пленки приводит к сдвигу электродного потенциала магния в область более отрицательных значений. Образование нерастворимых продуктов коррозии на металле частично или полностью тормозит анодную реакцию и этим смещает электродный потенциал магния в область более положительных значений.
Следовательно, поляризационные характеристики магниевого электрода в значительной мере зависят от состава окружающей среды. В случае, когда к металлу поступают анионы хлора (С1-) или анионы серной кислоты (SO42-), образующие растворимые магниевые соли, анодная поляризация магниевого электрода оказывается небольшой. Ионы же, образующие на поверхности магниевого электрода нерастворимые соединения, способствуют более сильной анодной поляризации. В природных условиях такие анионы, как фтор (F-) и фосфорной кислоты (РО43-), встречаются в небольших количествах.
Окисные и гидроокисные пленки, образующиеся на магниевом электроде, при наличии воды или влажного воздуха оказываются легко проницаемыми для ионов хлора и сульфат-ионов. По этой причине магниевые электроды не подвергаются сильной поляризации.
Продукты коррозии, образующиеся на протекторах, обогащаются анионами, находящимися в окружающей среде, поэтому вокруг протекторов создается токопроводящий слой, т. е. своеобразный активатор. Иногда такой слой оказывается более эффективным, чем искусственно созданный.
Стационарный потенциал магния примерно на один вольт оказывается положительнее его нормального потенциала. В нейтральных или слабощелочных электролитах сдвиг потенциала магниевого электрода в область более положительных значений зависит от наличия на его поверхности сплошной пленки, способствующей замедлению анодной реакции. Поэтому потенциал магниевого анода в водных электролитах зависит прежде всего от солевого состава и в меньшей степени от концентрации собственных ионов, которые и определяют стационарный потенциал магниевого электрода. Вещества, способствующие снятию окисной пленки или увеличивающие ее проницаемость, как правило, облегчают течение анодной реакции и сдвигают потенциал в область более отрицательных значений. Наоборот, вещества, создающие защитную пленку, тормозят анодную реакцию и сдвигают потенциал магниевого электрода в область более положительных значений. Первый случай наблюдается при наличии в среде ионов хлора Cl- и серной кислоты SO42-, способных легко проникать через пленку; второй случай — в щелочных средах или в присутствии ионов, образующих нерастворимые соединения магния.
При подключении магниевого и других протекторов к защищаемой конструкции их потенциал меняется. При прочих равных условиях скорость растворения магниевых электродов пропорциональна плотности анодного тока. Чем больше отдача электрической энергии, приходящаяся на единицу веса протектора, тем интенсивнее его растворение. С увеличением плотности тока в растворах, содержащих гидроксильные, карбонатные, фторидные, боратные или фосфатные ионы в значительных количествах, потенциал магниевого анода быстро понижается.
Высокая поляризация магниевых и других протекторов наблюдается в сухих почвах.
Таким образом, поведение магниевых протекторов во многом зависит от состава и концентрации в окружающей среде ионов различных солей, а также от кислотности и щелочности среды, т. е. от концентрации водородных ионов и влажности почвы.
Несмотря на отмеченные положительные свойства магния как материала для протекторов, чистый магний все же не рекомендуется применять для изготовления протекторов из-за значительной самокоррозии этого металла.
Магниевые сплавы с добавками цинка имеют меньшую скорость самокоррозии. Введение в сплав алюминия позволяет также сместить потенциал протектора в область более отрицательных значений.
Наличие в протекторе примесей, особенно таких, как никель, железо и медь, имеющих сравнительно небольшое перенапряжение водорода, обычно способствует увеличению самокоррозии. Поэтому количество таких примесей должно быть минимальным.
Например, при исключении из магниевого сплава примесей железа КПД магниевого протектора может быть увеличен на 20%. Однако получение такого сплава связано с технологическими трудностями. Марганец при определенных условиях может являться полезной примесью, так как он способствует уменьшению вредного влияния железа, содержащегося в сплаве протектора.