Обоснование необходимости автоматизации РТК горячей штамповки

Автор работы: Пользователь скрыл имя, 03 Февраля 2015 в 17:01, курсовая работа

Краткое описание

Другой не менее важной причиной автоматизации является совершенствование организации рабочих мест, их рациональная планировка, оснащение удобным пультом управления. Чем рациональнее организовано рабочее место, чем оно удобнее, чем лучше обеспечено всем необходимым для бесперебойной работы, тем выше производительность труда, меньше непроизводственные потери рабочего времени. Внедрение системы управления на качественно новой элементной базе позволяет снизить эксплуатационные затраты на регламент и проверку оборудования.

Прикрепленные файлы: 1 файл

штамповка.docx

— 1.21 Мб (Скачать документ)

 

Система управления будет иметь трехуровневую структуру.На нижнем уровне расположены элементы электроавтоматики и исполнительные устройства. Средний уровень осуществляет управление технологическим оборудованием по заданной программе. Верхний уровень осуществляет взаимодействие с оператором.

Задачами, подлежащими управлению и контролю,в данном РТК являются:

- управление перемещением ПР в позиции 1 и 2;

- управление движением рук ПР;

- управление схватом рук ПР;

- управление открытием и закрытием  электрической печи;

- контроль наличия детали в  электрической печи;

- контроль осуществления хода пресса

- контроль разрешения цикла.

Для начала работы РТК необходимо выполнение нескольких условий: нажатие оператором кнопки пуск на панели управления, а также необходимо разрешение цикла (РЦ). Под РЦ понимается сигнал, который приходит от системы управления разрешением начала циклаи соответствует условиям безопасности (внутри рабочей зоны нет людей).

Управление ПР, открытием/закрытием электрической печи в данной системе управления будет осуществляться на базе программируемого логического контроллера.

Контроль положения ПР и заслонки электрической печи будет осуществляться датчиками.

Управление прессом происходит при помощи системы управления прессом, таким образом, контроль положения пресса осуществляется другой СУ, от которой должен приходить сигнал к ПЛК.

Наличие детали в электрической печи будетопределяться СУ электрической печью, от которой также приходит сигнал к ПЛК. В данном случае контроль наличия детали при помощи датчиков является нецелесообразным, т.к. в печи заготовка выдерживается определенной время и при определенной температуре, эти параметры контролирует СУ печью, соответственно от этой системы управления и необходимо принимать сигнал о готовности заготовки.

Следовательно, управление РТК горячей штамповки осуществляется следующим образом:

ПР выполняет (такт 1) поворот позицию 1 Одновременно в этом такте открывается электрическая печь и разжимается схват правой руки. Далее происходит (такт 2) разжим схвата левой руки и выдвижение правой руки в рабочую зону пресса. Обработанная деталь зажимается схватом правой руки и одновременно выдвигается левая рука ПР (такт 3). Нагретая деталь зажимается схватом левой руки, правая рука задвигается (такт 4). В такте 5 происходит задвижениелевой руки. ПР поворачивается в позицию 2 (такт 6), электрическая печь закрывается. В результате поочередного выдвижения и задвижения рук ПР обрабатываемая детальпомещается в рабочую зону пресса, а обработанная деталь (после штамповки) сбрасывается в закалочный бак (такты 7 – 9). Выполнятся рабочий ход пресса (такт 10). После задвижения правой руки (такт 11) цикл работы РТК повторяется.

Циклограмма работы РТК приведена на листе 2 в графической части курсовой работы.

Выход из цикла (отключение РТК) осуществляется нажатием кнопки СТОП на панели оператора.

 

2.2 Выбор аппаратных средств системы управления

 

Произведем выбор технической реализации системы управления.

Спектр предлагаемой продукции ПЛК чрезвычайно широк. Приведем краткую оценку рынка контроллерных средств [6].

На нем работают все международные лидеры – производители данной продукции(АBB, Emerson, General Electric Fanuc Automation, Foxboro, Honeywell, Metso Automation, Moore Products, Omron, Rockwell Automation, Siemens, Yokogawa, Schneider Automation и др. Всего порядка 15 фирм, каждая из которых предлагает от двух до пяти контроллерных средств разных классов). Около 20 зарубежных производителей меньшего масштаба имеют российских дилеров, внедряющих их контроллерные средства на российских предприятиях (Koyo Electronics, Tornado, Triconex, PEP, Trey, Control Microsystems, GF Power Controls и др.).

Более 20 российских предприятий конкурируют с зарубежными производителями в разных классах контроллерных средств («Автоматика», ДЭП «Импульс», «Инсист Автоматика», «Интеравтоматика», «Квантор», «НИИтеплоприбор», «НВТ-автоматика», ПИК «Прогресс», «Саргон», «Системотехника», ТЕКОН, ЭМИКОН, ОВЕН и др.). Поскольку российские предприятия комплектуют контроллерные средства зарубежными микропроцессорами, стандартными сетями, типовыми системным и программным обеспечением, то продукция отечественного производства оказывается вполне конкурентоспособной по сравнению с импортными аналогами. К сожалению, при этом ее стоимость также становится сопоставимой с зарубежными аналогами.

В таблице 2 приведены некоторые характеристики ПЛК различных фирм. Все они построены по магистрально-модульному принципу, монтируются на панель или DIN-линейку, работают от напряжения +24 В, имеют широкий набор модулей.

Характеристики ПЛК различных производителей

 

Таблица 2

Тип ПЛК

SISMAQ

CQM1

SISMAQ

C200H

SMART 2

ADAM 5510

SIMATIC

S7-300

DL 205

SLC 500

Фирма-производитель

Omron

Omron

REP

Advantech

Siemens

PLCDirect

Allen-Bradley

Страна

Япония

Япония

Германия

США

Германия

США

США

 Диапазон температуры (С)

0+55

0+55

-40+80

-10+70

-25+60

0+60

0+55

Влажность воздуха (%)

10-90

10-90

5-95

5-95

5-95

5-95

5-95

Гарантийный срок (лет)

3

3

3

2

1

1

1

Номенклатура (шт)

42

87

18

12

45

30

80

Количество модулей в каркасе (шт)

До 11

3/5/8/10

До 14

4

До 8

3/4/6/9

4/7/10/13

Количество каналов в модуле

8/16/32

8/16/32/64

8

16

8/16/32

4/8/12/16

8/16/32

Размеры модуля (мм)

110 32 107

130 32 118

78 31 70

110 31 75

125 40 120

90 28 75

140 35 145

Вес модуля (г)

160-230

180-300

40-70

65-95

190-300

65-80

190-30

Мощность потребления (Вт)

0,85-1,2

0,24-1,3

0,1-0,27

0,25-0,3

0,6-2,0

0,5-1,0

0,5-2,2


 

Как видно из таблицы контроллеры имеют равные функциональные возможности, близкие технические и эксплуатационные характеристики и даже практически одинаковые размеры. В такой ситуации необходимо определить критерии оценки и выбора ПЛК, удовлетворяющего поставленной задаче.

Учитывая специфику устройств, критерии оценки можно разделить на три группы:

  1. Технические характеристики
    1. Количество каналов ввода/вывода
    2. Быстродействие
    3. Уровни напряжения входов/выходов
    4. Напряжение изоляции
  2. Эксплуатационные характеристики
    1. Диапазон рабочих температур
    2. Относительная влажность воздуха
  3. Потребительские свойства
    1. Производительность
      1. Время выполнения операции
      2. Функциональность
    2. Надежность
      1. Наработка на отказ
      2. Среднее время восстановления
    3. Затраты
      1. Стоимость приобретения
        1. Стоимость оборудования
        2. Стоимость монтажа
      2. Стоимость эксплуатации
        1. Потребляемая мощность
        2. Гарантийный срок
    4. Массогабаритные характеристики

При этом критериями выбора следует считать потребительские свойства, т.е. соотношение показателей затраты/производительность/надежность, а технические и эксплуатационные характеристики ограничениями для процедуры выбора. Т.к. характеристики между собой конфликтны, т.е. улучшение одной характеристики почти всегда приводит к ухудшению другой, необходимо оценивать их применительно к решаемым задачам управления.

Из анализа достоинств и недостатков технических средств управления дискретными технологическими процессами наиболее подходящим управляющим устройством является программируемый контроллер SIMATICS7-300 фирмы Siemens.

 

Рис.2 ПЛК SIMAITCS7-300

 

Этот выбор основан на следующих основных факторах:

- простоте данного средства  автоматизации;

- относительно небольшой стоимости  контроллера;

- довольно хорошем быстродействии процессорного модуля;

- достаточном количестве дискретных и аналоговых входов-выходов при возможности их расширения;

- понятном для пользователей  программном обеспечении, которое поставляется вместе с контроллером и является относительно недорогим;

- существует широкий спектр  модулей для максимальной адаптации  к требованиям решаемой задачи;

- есть возможность свободного  наращивания функциональных возможностей  при модернизации системы управления;

- простое включение контроллера  в сетевые конфигурации;

- удобная конструкция и работа  с естественным охлаждением.

Приведем назначение и общую техническую характеристику контроллера.

ПЛК S7-300 находит применение для автоматизации машин специального назначения, текстильных, упаковочных машин, машиностроительного оборудования, оборудования для производства технических средств управления и электротехнического оборудования, систем водоснабжения.

Контроллер предназначен для решения следующих задач:

1. сбор информации с датчиков;

2. выдача управляющих воздействий  на исполнительные органы различных  типов;

4. программноеуправление технологическими агрегатами, автоматический пуск и останов технологического оборудования;

5. математическая обработка информации по различным алгоритмам;

6. обслуживание оператора, прием и исполнение его команд, аварийная, предупредительная и рабочая сигнализация, индикация значений прямых и косвенных параметров;

11. обслуживание технического персонала при наладке, программировании, ремонте, проверке технического состояния контроллера;

12. самоконтроль и диагностика контроллера, вывод информации о техническом состоянии контроллера обслуживающему персоналу;

Программируемые контроллерS7-300 могут включать в свой состав [3]:

- модуль центрального процессора (CPU). В зависимости от сложности решаемых задач в контроллере могут использоваться более 20 типов центральных процессоров;

- блоки питания (PS) для питания контроллера от сети переменного или постоянного ток;

- сигнальные модули (SM), предназначенные для ввода и вывода дискретных и аналоговых сигналов;

- коммуникационные процессоры (CP) – интеллектуальные модули, выполняющие автономную обработку коммуникационных задач в промышленных сетях и системах связи;

- функциональные модули (FM) – интеллектуальные модули, оснащенные встроенным микропроцессором и способные выполнять задачи автоматического регулирования, взвешивания, позиционирования, скоростного счета, управления перемещением и т.д. Целый ряд функциональных модулей способен продолжать выполнение возложенных на них задач даже в случае остановки центрального процессора.

- интерфейсные модули (IM) – служат для подключения стоек расширения к базовому блоку контроллера, что позволяет использовать в системе локального ввода-вывода до 32 модулей различного назначения.

Конструкция контроллера отличается высокой гибкостью и удобством обслуживания. Все модули устанавливаются на профильную шину S7-300 и фиксируются в рабочих положениях. Объединение модулей в единую систему выполняется с помощью шинных соединителей. Порядок размещения модулей в монтажных стойках произвольный, за исключением модулей PS, CPU и IM, которые занимают фиксированные посадочные места.

Все центральные процессоры S7-300 характеризуются следующими показателями:

- высокое быстродействие;

- загружаемая память в виде  микро карты памяти ММС емкостью до 8 Мбайт;

- развитые коммуникационные возможности, одновременная поддержка большого  количества активных коммуникационных  соединений;

- работа без буферной батареи.

ММС используется для загрузки программы, сохранения данных при перебоях в питании CPU, хранения архива проектас символьной таблицей и комментариями, а также для архивирования промежуточных данных.

Типовой набор встроенных технологических функций позволяет решать задачи скоростного счета,измерения частоты и длительности периода, ПИД - регулирования, позиционирования, перевода части дискретных выходов в импульсный режим.

Все центральные процессоры S7-300 оснащены востренным интерфейсом MPI, который используется для программирования, диагностики и построения простейших сетевых структур.

Система команд центральных процессоров включает в свой состав более 350 инструкций и позволяет выполнять следующие операции:

- логические операции, операции  сдвига, вращения, дополнения, операции  сравнения, преобразования типов  данных, операции с таймерами  и счетчиками;

Информация о работе Обоснование необходимости автоматизации РТК горячей штамповки