Автор работы: Пользователь скрыл имя, 25 Января 2013 в 13:06, контрольная работа
Равновесное состояние железоуглеродистых сплавов в зависимости от содержания углерода и температуры описывает диаграмма состояния железо - углерод. На диаграмме состояния железоуглеродистых сплавов (рис. 1) на оси ординат отложена температура, на оси абсцисс - содержание в сплавах углерода до 6,67%, то есть до такого количества, при котором образуется цементит Fе3С.
1. Система «железо -цементит» 3
2. Механизм скольжения и двойникования металлов 8
3. Строение и особенности свойств неметаллических (полимерных) материалов 13
4. Литература. 20
Оглавление
1. Система «железо -цементит» 3
2. Механизм скольжения и двойникования металлов 8
3. Строение и особенности
свойств неметаллических (
4. Литература. 20
Равновесное состояние железоуглеродистых
сплавов в зависимости от содержания
углерода и температуры описывает
диаграмма состояния железо - углерод.
На диаграмме состояния
Рассматриваемую диаграмму правильнее считать не железоуглеродистой (Fe - С), а железоцементитной (Fe - Fе3С), так как свободного углерода в сплавах не содержится. Но так как содержание углерода пропорционально содержанию цементита, то практически удобнее все изменения структуры сплавов связывать с различным содержанием углерода.
Компоненты системы железо и углерод - элементы полиморфные. Основной компонент системы - железо.
Углерод растворим в железе в жидком и твердом состояниях, а также может образовать химическое соединение - цементит Fе3С или присутствовать в сплавах в виде графита.
В системе железо-цементит (Fe - Fе3С) имеются следующие фазы: жидкий раствор. твердые растворы - феррит и аустенит, а также химическое соединение - цементит.
Феррит может иметь две модификации - высоко- и низкотемпературную. Высокотемпературная модификация d-Fe и низкотемпературная - a-Fe представляют собой твердые растворы углерода, соответственно, в d- и a- железе.
а-диаграмма железо-цементит, б-кривая охлаждения для сплава, содержащего 0,7% углерода
Предельное содержание углерода в a-Fe при 723°С -0,02%, а при 20°С - 0,006%. Низкотемпературный феррит a-Fe по свойствам близок к чистому железу и имеет довольно низкие механические свойства, например, при 0,06% С:
s = 250 МПа;
d - 50%;
y= 80%;
твердость - 80...90 НВ.
Аустенит g-Fe - твердый раствор углерода в g-железе. Предельная растворимость углерода в g-железе 2,14%. Он устойчив только при высоких температурах, а с некоторым примесями (Мn, Сг и др.) при обычных (даже низких) температурах. Аустенит обладает высокой пластичностью, низкими пределами текучести и прочности. Твердость аустенита 160...200 НВ.
Цементит Fе3С - химическое соединение железа с углеродом, содержащее 6,67% vглерода. Между атомами железа и углерода в цементите действуют металлическая и ковалентная связи. Температура плавления ~1250°С. Цементит является метастабильной фазой; область его гомогенности очень узкая и на диаграмме состояния он изображается вертикалью. Время его устойчивости уменьшается с повышением температуры: при низких температурах он существует бесконечно долго, а при температурах, превышающих 950°С, за несколько часов распадается на железо и графит. Цементит имеет точку Кюри (210°С) и обладает сравнительно высокими твердостью (800 НВ и выше) и хрупкостью. Прочность его i растяжение очень мала (s =40 МПа).
В системе железо - цементит имеются две тонкие механические смеси фаз - эвтектическая (ледебурит) и эвтектоидная (перлит).
Ледебурит является смесью двух фаз g-Fe + Fе3С, образующихся при 1130°С в сплавах, содержащих от 2,0 до 6,67%С, и наблюдается визуально как структурная составляющая железоуглеродистых сплавов, главным образом, чугунов. Ледебурит обладает достаточно высокими прочностью (НВ>600) и хрупкостью.
Перлит (до 2,0%С) представляет собой смесь a-Fe + Fе3С (в легированных сталях -карбидов), образующуюся при 723°С и содержании углерода 0,83% в процессе распада аустенита, и наблюдается визуально как структурная составляющая железоуглеродистых сплавов. Механические свойства перлита зависят от формы и дисперсности частичек цементита (прочность пластинчатого перлита несколько выше, чем зернистого):
s=800...900 МПа;
d< 16%;
НВ 180..,220.
Диаграмма состояния Fe - Fе3С (рис. 1) является комбинацией диаграмм простых типов. На ней имеются три горизонтали трехфазных равновесий: перитектического (1496°С), эвтектического (1147°С) и эвтектоидного (727°С).
Все линии на диаграмме
состояния соответствуют
Линия ABCD - линия начала кристаллизации сплава (ликвидус), линия AHJECF - линия конца кристаллизации сплава (солидус).
В области диаграммы HJCE находится смесь двух фаз: жидкого раствора и аустенита, а в области CFD - жидкого раствора и цементита. В точке С при содержании 4,3%С и температуре 1130°С происходит одновременная кристаллизация аустенита и цементита и образуется их тонкая механическая смесь - ледебурит. Ледебурит присутствует во всех сплавах, содержащих от 2,0 до 6,67%С (чутуны).
Точка Е соответствует предельному насыщению железа углеродом (2,0%С).
В области диаграммы AGSF находится аустенит. При охлаждении сплавов аустенит распадается с выделением по линии GS феррита, а по линии SE - вторичного цементита. Линии GS и PS имеют большое практическое значение для установления режимов термической обработки сталей. Линию GS называют линией верхних критических точек, а линию PS -нижних критических точек.
В области диаграммы GSP находится смесь двух фаз - феррита и распадющегося аустенита, а в области диаграммы SEE' - смесь вторичного цементита и распадающегося аустенита.
В точке S при содержании 0,8%С и при температуре 723°С весь аустенит распадается и одновременно кристаллизуется тонкая механическая смесь феррита и цементита - перлит.
Линия PSK соответствует окончательному
распаду аустенита и
Структурные превращения
в сплавах, находящихся в твердом
состоянии, вызваны следующими причинами:
изменением растворимости углерода
в железе в зависимости от температуры
сплава (QP и SE), полиморфизмом железа
(PSK) и влиянием содержания растворенного
углерода на температуру полиморфных
превращений (растворение углерода
в железе способствует расширению температурной
области существования
Диаграмма стабильного равновесия Fe - Fе3С, обозначенная на рис. 1 пунктиром, отображает возможность образования высокоуглеродистой фазы - графита - на всех этапах структурообразования в сплавах с повышенным содержанием углерода. Диаграмма состояния стабильной системы железо - графит отличается от метастабильной системы железо-цементит только в той части, где в фазовых равновесиях участвует высокоуглеродистая фаза (графит или цементит).
На диаграмме состояния
различают две области: стали
и чугуны. Условия принятого
• стали - до 2,14% С, не содержат ледебурита;
• чугуны - более 2,14% С, содержат ледебурит.
В зависимости от содержания углерода (%) железоуглеродистые сплавы получили следующие названия:
• менее 0,83 - доэвтектоидные стали;
• 0,83 - эвтектоидные стали;
• 0,83...2 - заэвтектоидные стали;
• 2...4,3 - доэвтектические чугуны;
• 4,3...6,67 - заэвтектические чугуны.
Сплавляя железо с углеродом и варьируя содержание компонентов, получают сплавы с различными структурой и свойствами.
Деформацией называется изменение формы и размеров тела под действием внешних усилий. Деформации подразделяются на упругие и пластические. Упругие деформации исчезают, а пластические деформации остаются после окончания действия внешних сил. В основе упругих деформаций лежат обратимые смещения атомов металлов от положений равновесия; в основе пластических деформаций лежат необратимые перемещения атомов на значительные расстояния от исходных положений равновесия. Механизм пластической деформации рассмотрим на примере деформации монокристалла. Пластическая деформация в монокристалле осуществляется путем сдвига одной его части относительной другой. Сдвиг вызывают касательные напряжения, когда их значение превышает критическое tк.
Имеется две разновидности сдвига: скольжение и двойникование (рис.1).
Рис. 1. Схемы пластической деформации скольжения (а) и двойникования (б)
При скольжении одна часть
кристалла смещается
Деформация скольжения развивается по плоскостям и направлениям, на которых плотность атомов максимальна. Плоскость скольжения вместе с направлением скольжения, принадлежащим этой плоскости, образует систему скольжения.
Элементарный акт сдвига – это смещение одной части кристалла относительно другой на одно межатомное расстояние.
Пластическая деформация
в реальных кристаллах осуществляется
путем последовательного
Рис. 2. Схема перемещения краевой дислокации при скольжении (рис. 2).
При постоянно действующем
напряжении дислокация как бы по эстафете
передается от одной атомной плоскости
к другой, последовательно вытесняя
при этом каждый соседний «правильный»
ряд атомов. Процесс повторяется
до тех пор, пока дислокация не выйдет
на поверхность кристалла и его
верхняя часть сдвинется
В плоскости скольжения обычно
расположены десятки
В процессе деформации возникают новые дислокации, и их плотность повышается от 108 до 1012 см –2.
Основная масса промышленных
сплавов имеет
Рис. 3. Изменение микроструктуры поликристаллического металла при деформации:
а - e = 0%; б - e = 1%; в - e = 40%; г - e = 90%
Внутри зерна повышается плотность дефектов. При значительных деформациях образуется волокнистая структура, где границы зерен различаются с трудом (рис. 3г).
В результате холодного пластического
деформирования металл упрочняется, изменяются
его физические свойства. Изменение
свойств в результате пластической
деформации называют наклепом. В основе
упрочнения металла при деформировании
лежит, прежде всего, повышение плотности
дислокаций и, как следствие, их взаимное
торможение при пересечении дислокаций.
Движению дислокаций мешают различные
препятствия – границы зерен,
межфазные поверхности, дислокации,
пресекающие плоскость
Рис. 4. Зависимость механических свойств от степени деформации
Наклепанный металл запасает 5-10% энергии, затраченной на деформирование. Запасенная энергия тратится на образование дефектов решетки (плотность дислокации возрастает до 109 – 1012 см –2), и на упругие искажения решетки. Свойства наклепанного металла изменяются тем сильнее, чем больше степень деформации.
При деформировании увеличиваются прочностные характеристики (твердость, sв, s0,2, sупр) и понижаются пластичность и вязкость. Металлы интенсивно наклепываются в начальной стадии деформирования, затем при возрастании деформации механические свойства изменяются незначительно.
С увеличением степени деформации предел текучести s0,2 растет быстрее временного сопротивления sв. Обе характеристики у сильно наклепанного металла сравниваются, а удлинение d становится равным нулю. Такое состояние наклепанного металла является предельным; при попытке продолжить деформирование металл разрушается. Путем наклепа твердость и временное сопротивление sв удается повысить в 1,5 – 3 раза, а предел текучести s0,2 в 3-7 раз.
С ростом степени деформации возрастают удельное электрическое сопротивление, коэрцетивная сила, понижаются магнитная проницаемость и плотность металла. Наклепанные металлы легче коррозируют и склонны к коррозионному растрескиванию.