Вентиляция производственных помещений

Автор работы: Пользователь скрыл имя, 20 Февраля 2013 в 15:50, реферат

Краткое описание

Под вентиляцией понимают систему мероприятий и устройств, предназначенных для обеспечения на постоянных рабочих местах, в рабочей и обслуживаемой зонах помещений метеорологических условий и чистоты воздушной среды, соответствующих гигиеническим и техническим требованиям. Основная задача вентиляции – удалить из помещения загрязненный или нагретый воздух и подать свежий.

Прикрепленные файлы: 1 файл

«Вентиляция производственных помещений».doc

— 635.50 Кб (Скачать документ)

Вентиляция  с помощью дефлекторов. Дефлекторы представляют собой специальные насадки, устанавливаемые на вытяжных воздуховодах и использующие энергию ветра. Дефлекторы применяют для удаления загрязненного или перегретого воздуха из помещений сравнительно небольшого объема, а также для местной вентиляции, например, для вытяжки горячих газов от кузнечных горнов, печей и т.д.

 

 

 

 

Рис. 3  Дефлектор  ЦАГИ

 

В настоящее время  наибольшее распространение получил  дефлектор ЦАГИ  (рис. 3). Он состоит  их диффузора1, верхнюю часть которого охватывает цилиндрическая обечайка 2. Колпак 3 служит для защиты от попадания атмосферных осадков в патрубок 5, а корпус 4 – для предохранения от задувания ветром внутрь дефлектора.

Ветер, обдувая обечайку дефлектора, создает на большей части  его окружности разрежение, вследствие чего воздух из помещения движется по воздуховоду и патрубку 5 и затем выходит наружу через две кольцевые щели между обечайкой 2 и краями колпака 3 и конуса 4. Эффективность работы дефлекторов зависит главным образом от скорости ветра, а также высоты установки их над коньком крыши.

При ориентировочном  подборе дефлекторов определяют диаметр подводящего патрубка D(м) и соответственно конструктивные размеры  дефлектора

D = 0,0188

 (7)

где LД – производительность дефлектора, м3/ч; vД – скорость воздуха в патрубке, м/с, которая принимается равной половине скорости ветра vв; обычно υД = 0,5 от скорости ветра;υв = 3 – 4 м/с (для каждой местности известна средняя скорость ветра за наиболее жаркие месяцы).

 

    1. Механическая вентиляция

В системах механической вентиляции движение воздуха осуществляется вентиляторами и в некоторых случаях  эжекторами.

3.1 Приточная  вентиляция. Установки приточной вентиляции обычно состоят из следующих элементов (рис.4):

 

 

Рис. 4. Механическая вентиляция

 

Воздухозаборного устройства (воздухоприемника) 1 для забора чистого воздуха, устанавливаемого снаружи здания в тех местах, где содержание вредных веществ минимально (или они отсутствуют вообще); воздуховодов 2, по которым воздух подается в помещение; наиболее часто воздуховоды делаются металлическими, реже – бетонными, кирпичными, шлакоалебастровыми и т.п; фильтров 3 для очистки воздуха от пыли; калориферов 4, где воздух нагревается (наибольшее распространение получили калориферы, в которых теплоносителем  является горячая вода или пар; используются также  и электрокалориферы); вентилятора 5; приточных отверстий или насадков 6, через которые воздух попадает в помещение (воздух может подаваться сосредоточенно или равномерно по помещению); регистрирующих устройств , устанавливаемых в воздухоприемном устройстве и на ответвлениях воздуховодов.

Фильтр, калорифер и вентилятор обычно устанавливают в одном  помещении, в так называемой вентиляционной камере. Воздух подается в рабочую  зону, причем скорости выхода воздуха  ограничены допустимым шумом и подвижностью воздуха на рабочем месте.

3.2. Вытяжная вентиляция. Установки вытяжной вентиляции состоят (рис.4, б) из вытяжных отверстий или насадков 7, через которые воздух удаляется из помещения; вентилятора 5, воздуховодов 2; устройства для очистки воздуха от пыли или газов 8, устанавливаемого в тех случаях, когда выбрасываемый воздух необходимо очищать с целью обеспечения нормативных концентраций вредных веществ в выбрасываемом воздухе и в воздухе населенных мест, устройства для выброса воздуха (вытяжной шахты) 9, которое должно быть расположено на 1 – 1,5 м выше конька крыши.

При работе вытяжной системы чистый воздух поступает в помещение  через неплотности в ограждающих  конструкциях. В ряде случаев это  обстоятельство является серьезным недостатком данной системы вентиляции, так как неорганизованный приток холодного воздуха (сквозняки) может вызвать простудные заболевания.

3.3. Приточно-вытяжная  вентиляция. В этой системе воздух подается в помещение приточной вентиляцией, а удаляется вытяжной вентиляцией (рис. 4, а и б), работающими одновременно. Место расположения приточных и вытяжных воздуховодов, отверстий и насадков, количество подаваемого и вытягиваемого воздуха выбирается с учетом требований, предъявляемых к системе вентиляции.

Место для забора свежего  воздуха выбирается с учетом направления  ветра, с наветренной стороны  по отношению к выбросным отверстиям, вдали от мест загрязнений.

Приточно-вытяжная вентиляция с рециркуляцией (рис. 4,в) характерна тем, что воздух, отсасываемый из помещения 10 вытяжной системой, частично повторно подают в это помещение через приточную систему, соединенную с вытяжной системой воздуховодом 11. Регулировка количества свежего, вторичного и выбрасываемого воздуха производится клапанами 12. В результате такой системы вентиляции достигается экономия расходуемой теплоты на нагрев воздуха в холодное время года и на его очистку.

Для рециркуляции разрешается  использовать воздух помещений, в которых  отсутствуют выделения вредных  веществ или выделяющиеся вещества относятся к 4-му классу опасности, причем концентрация этих веществ в подаваемом в помещение воздухе не превышает 0,3 q пдк.

Кроме того, применение рециркуляции не допускается, если в воздухе помещений  содержатся болезнетворные бактерии, вирусы, имеются резко выраженные неприятные запахи.

Вентиляторы – это воздуходувные машины, создающие определенное давление и служащие для перемещения воздуха при потерях давления в вентиляционной сети не более    кПа. Наиболее распространенными являются осевые и радиальные (центробежные) вентиляторы.

Осевой вентилятор (рис. 5,а) представляет собой расположенное  в цилиндрическом кожухе лопаточное колесо, при вращении которого поступающий  в вентилятор воздух под действием  лопаток перемещается в осевом направлении. Это наиболее простая конструкция осевого вентилятора. Широко применяются более сложные вентиляторы, снабженные направляющими и спрямляющими аппаратами. Преимуществами осевых вентиляторов являются простота конструкции, возможность эффективного регулирования производительности в широких пределах посредством поворота лопаток колеса, большая производительность, реверсивность работы. К недостаткам относятся относительно малая величина давления и повышенный шум. Чаще всего применяют эти вентиляторы при малых сопротивлениях вентиляционной сети (примерно до 200 Па), хотя возможно использование этих вентиляторов при больших сопротивлениях (до 1 кПа).

 

Рис. 5. Вентиляторы

 

Радиальный (центробежный) вентилятор (рис. 5) состоит из спирального  корпуса 1 с размещенными внутри лопаточным колесом 2, при вращении которого воздух, поступающий через входное отверстие 3, попадает в каналы между лопатками колеса и под действием центробежной силы перемещается по этим каналам, собирается в корпусе и выбрасывается через выпускное отверстие 4.

В зависимости от развиваемого давления вентиляторы делят на следующие  группы: низкого давления – до 1кПа (рис. 5,в); среднего давления – 1 – 3 кПа;  высокого давления - - 12 кПа.

Вентиляторы низкого  давления и среднего давления применяют  в установках общеобменной и местной вентиляции, кондиционирования воздуха и т.п. Вентиляторы высокого давления используют в основном для технологических целей, например, для дутья в вагранки.

Перемещаемый вентиляторами  воздух может содержать самые  разнообразные примеси в виде пыли, газов, паров, кислот и щелочей, а также взрывоопасные смеси. Поэтому в зависимости от состава перемещаемого воздуха вентиляторы изготовляют из определенных материалов и различной конструкции:

а) обычного использования  для перемещения чистого или малозапыленного воздуха (до 100 мг/м3)  с температурой не выше 80ºС; все части таких вентиляторов изготовляют из обычных сортов стали;

б) антикоррозионного  исполнения – для перемещения  агрессивных сред (пары кислот, щелочей); в этом случае вентиляторы изготовляют из стойких против этих сред материалов – железохромистой и хромникелевой стали, винипласта и т.д;

в) искрозащитного исполнения – для перемещения взрывоопасных  смесей, например, содержащих водород, ацетилен и т.д.; основное требование, предъявляемое к таким вентиляторам, – полное исключение искрения при их работе (вследствие ударов или трения), поэтому колеса, корпуса и входные патрубки вентиляторов изготовляют из алюминия или дюралюминия; участок вала находящийся в потоке взрывоопасной смеси, закрывают алюминиевыми колпаками и втулкой, а в месте прохода вала через кожух устанавливают сальниковое уплотнение;

г) пылевые – для  перемещения пыльного воздуха (содержание пыли более 100 мг/м3); рабочие колеса вентиляторов изготовляют из материалов повышенной прочности, они имеют мало (4–8) лопаток.

По типу привода вентиляторы  выпускают с непосредственным соединением  с электродвигателем (колесо вентилятора  находится на валу электродвигателя или вал колеса соединен с валом  электродвигателя при помощи соединительной муфты) и с клиноременной передачей (на валу колеса есть шкив). Радиальные вентиляторы бывают правого и левого вращения. Вентилятор считается правого вращения, когда колесо вращается по часовой стрелке (если смотреть со стороны, противоположной входу).

В зависимости от конкретных условий работы каждой вентиляционной установки выбирают привод вентилятора  и направление вращения колеса, которое  в любом случае будет правильным, если направлено по ходу разворота  спирали кожуха.

В настоящее время  промышленность выпускает различные типы осевых (МЦ, ЦЗ–0,4) и радиальных вентиляторов (Ц4 –70, Ц4–76, Ц8–18 и т.д.) для установок вентиляции и кондиционирования воздуха промышленных предприятий.

Вентиляторы изготовляют  различных размеров, и каждому  из вентиляторов соответствует определенный номер, показывающий величину диаметра рабочего колеса в дециметрах. Например, вентилятор Ц4–70 №6,3 имеет диаметр колеса 6,3 дм, или 630 мм. вентиляторы различных номеров, выполненные по одной и той же аэродинамической схеме, имеют геометрически подобные размеры и составляют одну серию или тип, например, Ц4–70.

Для подбора осевых вентиляторов, как правило, нужно знать требуемую  производительность, равную количеству воздуха, определяемую расчетным путем, полное давление. Номер вентилятора  и электродвигатель к нему выбирают по справочникам. Для подбора радиальных вентиляторов, кроме производительности и давления, необходимо выбрать их конструктивное исполнение.

Полное давление ρв, развиваемое вентилятором, расходуется на преодоление сопротивлений во всасывающем и нагнетательном воздуховодах, возникающих при перемещении воздуха:    

Pв = ∆pвс + ∆pн = ∆pп, (8)

где ∆pвс и ∆pн – потери давления во всасывающем и нагнетательном воздуховодах; ∆pп – суммарные потери давления в вентиляционной сети.

Потери давления складываются из потерь на трение (за счет шероховатости поверхностей воздуховодов) и местные сопротивления (повороты, изменения сечения, фильтры, калориферы и т.д.).

Потери ∆pп (Па) определяют суммированием потерь давления на отдельных расчетных участках сети:

 

∆pп =

 (9)

∆pi =  ∆pтр i+ ∆pмс i = ∆pтрi y li +

 (10)

где ∆pтрi и ∆pмс i – соответственно потери давления на трение и на преодоление местных сопротивлений на расчетном i-м участке воздуховода; ∆pтрi y –потери давления на трение на 1 м длины; li –длина расчетного участка воздуховода, м; -сумма коэффициентов местных сопротивлений на расчетном участке; -скорость воздуха в воздуховоде, м/с; ρ –плотность воздуха, кг/м3.

Величины ∆pтрi y и ζ приводятся в справочниках. Порядок расчета вентиляционной сети следующий.

1. Выбирают конфигурацию сети  в зависимости от размещения  помещений, установок, оборудования, которые должна обслуживать вентиляционная  система.

2. Зная требуемое количество  воздуха на отдельных участках  воздуховодов, определяют поперечные  размеры с учетом допустимых  скоростей движения воздуха (3 – м/с).

3. По формуле рассчитывают  сопротивление сети , причем за  расчетную принимают наиболее  протяженную магистраль.

4. По каталогам выбирают  вентилятор и электродвигатель.

5. Если сопротивление  сети оказалось слишком большим,  размеры воздуховодов увеличивают  и производят пересчет сети. Зная, какую производительность и полное давление должен развивать вентилятор, производят выбор вентилятора по его аэродинамической характеристике.

Такая характеристика вентилятора  графически выражает связь между  основными параметрами – производительностью, давлением, мощностью и КПД при определенных частотах вращения n (рад/с или об/мин).

При выборе типа и номера вентилятора необходимо руководствоваться  тем, что вентилятор должен иметь  наиболее высокий КПД, относительно небольшую скорость вращения (u = πDn/60), а также чтобы частота вращения колеса позволяла осуществить соединение с электродвигателем на одном валу.

Информация о работе Вентиляция производственных помещений