Предварительное напряжение монолитного железобетона

Автор работы: Пользователь скрыл имя, 08 Января 2014 в 14:09, реферат

Краткое описание

Создание напряженного состояния в конструкции на стадии изготовления, когда знак напряжения в материале противоположен знаку напряжений от эксплуатационной нагрузки, является одним из крупнейших достижений инженерной мысли ХХ века. У истоков этой концепции в ее современном понимании стояли Эжен Фрейссине (Франция) и Виктор Васильевич Михайлов (Россия). В развитии преднапряженного железобетона важную роль сыграли Мерш, Леонгард, Финстервальдер, Витфохт (Германия), Эванс (Великобритания), Моранди, Леви (Италия), Гийон, Лакруа, Вирложе (Франция), Гервик, Лин (США), Вальтер (Швейцария), Торроха (Испания), Борджес (Португалия) и многие другие. Весомый вклад внесли и многие российские специалисты.

Прикрепленные файлы: 1 файл

монолитный жб.doc

— 65.50 Кб (Скачать документ)

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО СТРОИТЕЛЬНЫЙ 
УНИВЕРСИТЕТ (СИБСТРИН)

 

 

 

 

Кафедра ЖБК

 

 

РЕФЕРАТ

«Предварительное напряжение монолитного железобетона»

 

                                                                                                                         Выполнил ст.гр.424

Деревянкина В.А

                                                                                                              Проверил Нарушевич А.Н

 

 

 

 

 

 

 

 

 

 

 

 

 

Новосибирск,2013

Предварительное напряжение монолитного железобетона

 Создание  напряженного состояния в конструкции  на стадии изготовления, когда  знак напряжения в материале  противоположен знаку напряжений  от эксплуатационной нагрузки, является  одним из крупнейших достижений  инженерной мысли ХХ века. У  истоков этой концепции в ее современном понимании стояли Эжен Фрейссине (Франция) и Виктор Васильевич Михайлов (Россия). В развитии преднапряженного железобетона важную роль сыграли Мерш, Леонгард, Финстервальдер, Витфохт (Германия), Эванс (Великобритания), Моранди, Леви (Италия), Гийон, Лакруа, Вирложе (Франция), Гервик, Лин (США), Вальтер (Швейцария), Торроха (Испания), Борджес (Португалия) и многие другие. Весомый вклад внесли и многие российские специалисты.

 Предварительное напряжение  развивалось непросто. Интересно , что в 30-х годах при защите докторской диссертации В.В. Михайлова, посвященной развитию этого метода, два оппонента из трех выступили против. А в Германии только совсем недавно было разрешено применять в мостах напрягаемую арматуру, расположенную вне сечения. Считалось, что арматура, расположенная вне бетона, не защищена от коррозии. Сейчас запрет отменили по тем соображениям, что арматуру от коррозии можно как раз надежнее защитить, если иметь к ней свободный доступ. Сегментная сборка железобетонных мостов с помощью напрягаемой арматуры – метод, получивший широкое распространение в СССР и многих других странах – в Германии не разрешена до сих пор.

 В СССР предварительное  напряжение широко применялось,  в основном, при изготовлении  конструкций массового применения в гражданском и промышленном строительстве. Преднапряженных железобетонных конструкций из обычного и легкого бетона выпускалось около 30 млн. кубометров в год, существенно больше, чем в какой-либо другой стране. На долю предварительно напряженных конструкций приходилось более 20% общего объема сборного железобетона. Предварительно напряженные конструкции изготавливались, как правило, с натяжением арматуры на упоры, во всех регионах страны. Такая широкая география этой технологии стала возможной благодаря, прежде всего, внедрению электротермического способа натяжения стержневой арматуры повышенной прочности. Авторы этого способа были по заслугам удостоены высокого звания лауреатов престижной Ленинской премии. Для народного хозяйства были сэкономлены сотни тысяч тонн металла.

 Был разработан значительный  объем нормативной литературы  по проектированию и технологии  изготовления предварительно напряженных  железобетонных конструкций, в  том числе СНиП 2.03.01.84, который  прямо указывал: «При выборе элементов должны предусматриваться преимущественно предварительно напряженные конструкции из высокопрочных бетонов».

 В настоящее время  в большинстве развитых стран  мира из предварительно напряженного  железобетона изготавливается основной  объем конструкций перекрытий и покрытий для одноэтажных и многоэтажных производственных, жилых и общественных зданий, значительная часть изделий, используемых в инженерных сооружениях для всех отраслей строительства.

 Обширной областью  применения монолитного предварительно напряженного железобетона являются инженерные сооружения (градирни, трубы, резервуары, защитные оболочки АЭС и т.д.). Современные градирни достигают высоты 150 м. Резервуары для хранения воды, сжиженного газа и т.д. могут достигать объема в несколько сот тысяч кубометров.

 Особенно эффективно  выглядят из преднапряженного  железобетона телевизионные башни,  являющиеся достопримечательностями  многих городов, особенно в  Германии. Выдающимся сооружением  явилась, построенная по проекту  Н.В. Никитина, московская телебашня, при общей высоте которой 537 м, железобетонная часть составляет 380 м. На сегодня телебашня в Торонто является самым высоким в мире отдельно стоящим сооружением (555 м). Есть более высокие стальные мачты, но они раскреплены растяжками. Поперечное сечение башни в виде трилистника оказалось весьма удачным для выполнения работ в скользящей опалубке и размещения напрягаемой арматуры. Ветровой опрокидывающий момент на башню составляет почти полмиллиона тоннометров при собственном весе высотной части башни чуть более 60 тыс. тонн.

 В Германии и Японии  широко строятся резервуары яйцевидной  формы для очистных сооружений. К настоящему времени их построено  общей емкостью более 1 млн.  кубометров. Единичные емкости таких  резервуаров от 1000 до 12 тыс. кубометров.

 За последние годы  в США было построено более 100 млн. м² монолитных перекрытий с натяжением арматуры на бетон. Значительный объем таких перекрытий возведен в Канаде.

 Предварительно напряженная  арматура в монолитных железобетонных  конструкций (перекрытия, мосты, высотные сооружения и т.д.) в последнее время применяется без сцепления с бетоном, то есть наблюдается отказ от инъецирования каналов, как средства защиты арматуры от коррозии. Для защиты от коррозии арматурные элементы (канаты) помещаются в специальные оболочки, заполненные антикоррозионным составом.

 Следует отметить, что  монолитный предварительно напряженный  железобетон, помимо традиционных  строительных целей, нашел широкое  применение для возведения корпусов  реакторов и защитных оболочек АЭС. В настоящее время мощность атомных электростанций в мире превышает 150 млн. кВт, в том числе доля АЭС с применением преднапряженного железобетона для корпусов реакторов и защитных оболочек составляет более 40 млн. кВт. Защитных оболочек реакторов АЭС из преднапряженного железобетона построено уже более 100. Отсутствие защитной оболочки реактора на Чернобыльской АЭС привело к тому, что авария реактора вызвало катастрофу.

 Ярким примером строительных  возможностей преднапряженного  железобетона являются морские платформы для добычи нефти высотой в несколько сот метров.

 Построенная в 1995 г.  в Норвегии платформа «Тролл»  для добычи нефти, (а всего их  построено более 20) имеет полную  высоту 472 м, что в полтора раза  выше Эйфелевой башни. Платформа  установлена на участке моря с глубиной воды более 300 м и рассчитана на воздействие ураганного шторма с максимальной высотой волны 31,5 м. На её изготовление было израсходовано 250 тысяч кубометров высокопрочного бетона класса С80, 100 тысяч тонн обычной стали и 11 тысяч тонн напрягаемой арматурной стали. Расчетный срок эксплуатации платформы 70 лет.

 Обширной областью  применения предварительно напряженного  железобетона является мостостроение.  Только в США построено более  500 тыс. железобетонных автодорожных  мостов с различными пролетами. За последнее время там построено более 20 вантовых мостов длиной 600-700 м с центральными пролетами от 192 до 400 м. Из предварительно напряженного железобетона сооружаются там не только внеклассные мосты. Мосты пролетом до 50 м в США сооружаются только в сборном варианте из железобетонных преднапряженных балок.

 Достижения в мостостроении  имеют не только США. В г.  Брисбен (Австралия) построен  балочный мост с центральным  пролетом 260 м, наибольшим среди  мостов этого типа. Вантовый мост «Баррнос де Луна» в Испании имеет пролет 440 м, мост «Анасис» в Канаде – 465 м, мост в Гонконге – 475 м. Арочный мост в Южной Африке – наибольший пролет 272 м и т. д. Мировой рекорд для вантовых мостов принадлежит мосту «Нормандия», где достигнут пролет 864 м. В России же в последнее время большепролетные мосты чаще строятся из стали.

 Выдающийся вклад в  развитие преднапряженного железобетона  принадлежит российским ученым, которые создали и применили  принципиально новые, эффективные  самонапряженные и непрерывно армированные конструкции. Из самонапряженного железобетона выполнены различные емкости, плавательные бассейны, ледовые стадионы, плиты покрытий и многие другие. Метод непрерывного армирования позволил максимально механизировать и автоматизировать раскладку и напряжение высокопрочной проволоки и канатов в плитных конструкциях перекрытий и покрытий гражданских и промышленных зданий. Создание машины для выполнения этих работ успешно работают на заводах ЖБИ уже много лет.

 Развитие преднапряженных  конструкций перекрытий жилых и общественных зданий связано с увеличением их пролетов, поскольку переход к проектированию зданий с широким шагом поперечных стен и колонн будет развиваться все интенсивнее.

 В структуре сборных  конструкций в США из общего  объема производства сборных железобетонных конструкций (26 млн. м3) объем производства плит Т и 2Т превышает 25%, а всего преднапряженных конструкций к этому объему выпускается 40%. Плиты «на пролет» широко производятся также в Великобритании, ФРГ, ВНР, ПНР и других странах. Значительная часть конструкций стропильных и подстропильных балок, ферм, ригелей, стеновых панелей изготовляются предварительно напряженными с применением высокопрочной проволочной и стержневой арматуры и бетонов классов до В50.

 Возможности повышения эффективности сборных железобетонных конструкций через применение предварительного напряжения можно показать на примере производства покрытий и перекрытий. Увеличение пролетов плитных конструкций до 9-12 м при ограничении их толщины может быть достигнуто при создании неразрезности плит средствами предварительного напряжения без использования сварки для соединения конструкций между собой. В России на долю этих изделий приходится более трети общего производства сборных элементов. В последние годы, правда, имеются случаи отказа от предварительного напряжения арматуры при изготовлении плит перекрытия, (старое оборудование устарело, нового нет, электроэнергия дорожает) и перехода на выпуск плит с обычной арматурой, с повышенным ее расходом. Плиты перекрытий, производятся в России, главным образом, по агрегатно-поточной технологии, высотой 22 см и пролетом до 7 м.

 Следует  сказать несколько слов об  изготовлении плит перекрытий  методом безопалубочного формования  на длинных стендах. За рубежом  безопалубочное производство плит на длинных стендах получило значительное распространение. Обычной практикой является производство плит пролетом до 17 м, высотой сечения 40 см под нагрузку до 5 KN/m2 (500 кгс/м2). В Финляндии железобетонные многопустотные плиты под такую же нагрузку выпускаются высотой сечения даже 50 см при пролете до 21 м, то есть применение предварительного напряжения позволяет выпускать сборные элементы качественно иного уровня. Натяжение канатной арматуры на таких стендах, как правило, - групповое при мощности домкратов 300-600 т. Разработаны различные системы безопалубочного формования на длинных стендах «Спайрол», «Спэнкрит», «Спандек», «Макс Рот», «Партек» и др., отличающиеся производительностью, применяемой арматурой, технологическими требованиями к бетону, формой поперечного сечения панелей и другими параметрами. На стендах длиной до 250 м изготавливают плиту со скоростью до 4 м/мин; по высоте в пакете можно бетонировать 6 плит. Ширина плит достигает 2,4 м, максимальный пролет при разрезке может достигать 21 м. Только плит «Спэнкрит» применяют в США более 15 млн. м2 ежегодно. В свое время, бывая на заводах сборного железобетона за рубежом, отечественные специалисты познакомились с технологией изготовления плит перекрытий по этой технологии. Появились длинные стенды для безопалубочного формования и в России (технология «Мах-Рот»). Однако эта технология не получила дальнейшего распространения. В широко используемых у нас конструктивных системах зданий соединения элементов осуществляется через закладные детали. В плитах, изготавливаемых на длинных стендах методом экструзии, возможности размещения закладных деталей ограничены. Однако для сборно-монолитных зданий плиты без закладных деталей могут найти самое широкое распространение, что и имеет место за рубежом, особенно в скандинавских странах и в США.

 Следует  иметь в виду, что разработка  непрерывно армированной конструкции,  даже имеющей аналог среди  других конструкций, не может  быть сведена к простой замене  одного вида арматуры на другой.

 Непрерывное  армирование конструкции обладает  рядом особенностей, обусловленных  методом изготовления, которые необходимо  учитывать при проектировании.

 Важное значение  имеет расширение областей применения  предварительного напряжения в резервуаростроении, особенно в емкостях для хранения нефти и нефтепродуктов, в центрифугированных конструкциях (колоннах, пролетных строениях, сваях, трубах и др.), в несущих конструкциях каркасных и крупнопанельных зданиях. Зарубежный опыт показывает значительную эффективность применения предварительного напряжения в монолитных плитных фундаментных большой протяженности, безбалочных монолитных перекрытиях, опорных устройствах и постаментах под тяжелое оборудование, несущих монолитных конструкциях подземных сооружений, в том числе многоэтажных. Имеются интересные примеры применения предварительного напряжения при реставрации памятников старины.

 Исключительно  плодотворной является идея двух  и трехосного напряжения конструкций.  Обширные исследования подобных конструкций были проделаны профессором В.В. Михайловым и его учениками. В.В. Михайлов разработал даже проект башни высотой 2 км, смонтированной из трехосно предварительно напряженных элементов заводского изготовления.

 Расчетные  сопротивления сжатию в стойках башни составляли 150 МПа. Такие элементы изготавливаются из бетонов, по нынешним понятиям, средних классов (В40-В50). В реальных испытаниях элементов, имеющих спиральную предварительно напряженную обойму, напряжения в бетоне достигали 300 МПа при сохранении линейной зависимости между приростом напряжения и приростом деформаций до 150 МПа.

 В объемно-напряженных  архитравах гидравлических прессов  с железобетонными станинами  бетон работал упруго при напряжениях  втрое превышающих его кубиковую  прочность.

 Иными словами,  предварительное напряжение в  трех направлениях позволяет  создавать качественно иной железобетон.  Причем повышение несущей способности  материала достигается конструктивными,  а не технологическими приемами.

 Напряжение  в конструкции может создаваться и путем применения напрягающего цемента, о чем говорилось выше. Напрягающий цемент в затвердевшем состоянии обладает особой фиброобразной структурой, отличающейся практически полной водонепроницаемостью, высокой прочностью при растяжении, трещиностойкостью и долговечностью. Такими же свойствами обладают и изготавливаемые на его основе напрягающие бетоны (НБ).

Информация о работе Предварительное напряжение монолитного железобетона