Методика искусственного улучшения грунтов оснований

Автор работы: Пользователь скрыл имя, 22 Апреля 2014 в 16:52, реферат

Краткое описание

Воздействие на грунт, с помощью которого повышается его прочность, называется искусственное закрепление грунта. Прочность грунта заключается в его способности быть неразмываемым, иногда водонепроницаемым, используется с целью создания водонепроницаемых ограждений при отрывке котлованов и траншей, для борьбы с оплыванием откосов и укрепления оснований фундаментов. Поверхностное закрепление грунтов используется в строительстве при работах на глубине менее метра, а глубинное закрепление грунтов - на глубине в несколько метров.
Искусственные основания при возведении зданий на слабых грунтах устраивают путем уплотнения или упрочнения грунта, а также заменой слабого грунта оснований более прочным. Способ закрепления выбирают в зависимости от грунтовых условий района строительства, а также производственных возможностей его выполнения.

Содержание

Введение……………………………………………………………………….3
Механическое закрепление грунтов………………………………………5
. Уплотнение……………………………………………………….5
. Замена грунта……………………………………………………..8
. Замораживание…………………………………………………..10
Химическое закрепление грунтов………………………………………..10
. Цементация………………………………………………………12
. Глинизация……………………………………………………….12
. Битумизация……………………………………………………...13
. Силикатизация…………………………………………………...14
. Смолизация………………………………………………………15
. Электрохимическое закрепление……………………………….16
. Технология и производство работ………………………………17
. Инъекторы и предъявляемые к ним требования……………….19
3. Метод вертикального дренирования……………………………………….21
4. Подготовка проектирования усиления грунтов…………………………...22
Список литературы…………………………………………………………….24

Прикрепленные файлы: 1 файл

n1.doc

— 504.50 Кб (Скачать документ)

Число и толщину слоев рассчитывают так, чтобы после уплотнения верх подушки совпал с проектной отметкой. Уплотненную поверхность песчаной подушки зачищают. Поверхность гравийной или щебеночной подушки смачивают и покрывают стяжкой из цементного раствора, выравнивая его под рейку. В случае замены грунта при высоком уровне грунтовых вод нижнюю часть подушки отсыпают в воду сразу на всю глубину, начиная со стороны въезда. Материал, доставляемый самосвалами, разгружают на урезе воды и бульдозером сталкивают в воду. При этом откос насыпи под водой продвигается вперед. Отсыпку ведут полосами поперек котлована по всей ширине его дна. В этих условиях песчаные подушки уплотняют глубинными вибраторами, а щебеночные или гравийные - поверхностным вибраторами или механическими трамбовками.

1.3 Замораживание.

Замораживание применяют в водонасыщенных грунтах (плывунах) при возведении фундаментов, сооружении шахт и др. Для замораживания грунта по периметру котлована погружают замораживающие колонки из труб, соединенные между собой трубопроводом, по которому нагнетают охлаждающую жидкость-рассол с температурой -20...-25 °С. Существенными недостатками метода являются временный эффект замораживания, длительный процесс оттаивания, необходимость разрабатывать весьма прочный мерзлый грунт. Однако технология замораживания хорошо отработана и способ широко применяется.

      1. Химическое закрепление грунтов.

Химическое закрепление грунтов начало развиваться с 1931 г., когда Б.А. Ржаницыным был разработан первый — двухрастворный способ силикатизации водонасыщенных песков. По схеме двухрастворного способа была осуществлена также силикатизация просадочных лессовых грунтов, при которой роль второго реагента выполнял сам грунт.

В первый период разработка химических способов закрепления грунтов была основана на использовании неорганического полимера — силиката натрия. В дальнейшем разработка химических способов закрепления грунтов велась по пути создания гелеобразующих растворов, которые представляли собой смесь раствора силиката натрия небольшой плотности с отверждающими растворами кислот и солей. Малая вязкость растворов (1,5—3,0 мПа.с) позволила закреплять песчаные грунты с коэффициентом фильтрации от 0,2 до 2,0 м/сут, в которых двухрастворпый способ силикатизации неприменим. Использование для отверждения раствора силиката натрия газов (углекислого газа или аммиака) находится пока в стадии разработки.

В связи с развитием химии органических полимеров были проведены большие исследования по использованию выпускаемых химической промышленностью смол для закрепления грунтов. Наиболее доступной для применения оказалась мочевиноформальдегидная (карбамидная) смола. В качестве отвердителя использовали соляную и щавелевую кислоты. Однако некоторая токсичность, обусловленная выделением свободного формальдегида в момент разработки закрепленного массива, т. е. при проходке тоннеля или вскрытии котлована, ограничивала применение способа смолизации. В результате лабораторных исследований удалось значительно уменьшить выделение свободного формальдегида. Это несколько снизило прочность закрепления, но позволило применять смолизацию при проходке подземных выработок.

В разработку рецептур химических способов закрепления песков и лессов большой вклад внесли доктора техн. наук В. В. Аскалонов и В. Е. Соколович.

В области химического закрепления глинистых и илистых грунтов были проведены исследования с применением химических растворов и постоянного электрического тока. Изучение процессов электроосмоса в глинистых грунтах позволило разработать способ осушения котлованов в этих грунтах, что дает возможность закладывать фундаменты в них «насухо». Что касается улучшения строительных свойств грунтов путем воздействия на них постоянного электрического тока, то этот способ находит очень ограниченное применение в строительстве—главным образом для придания устойчивости склонам выемок.

Учитывая все возрастающую потребность в повышении прочностных свойств слабых глинистых и илистых грунтов, в лаборатории с 1975 г. ведутся разработки буросмесительного способа закрепления таких грунтов.

Применение разработанных химических способов в различных областях строительства показало, что они особенно эффективны для улучшения свойств грунтов под фундаментами существующих сооружений. Это в значительной степени объясняется тем, что превращение грунта под фундаментом в камень осуществляется, как правило, без нарушения эксплуатации здания. 

Существует несколько химических способов закрепления грунтов: цементация, глинизация, битумизация, силикатизация, смолизация, электрохимическое закрепление и буросмесительное для создания цементогрунта.

2.1. Цементация.

Цементация грунтов как способ представляет собой заполнение пустот, трещин и крупных пор в крупнообломочных грунтах, образующим со временем твердый цементный или цементно-глинистый камень.

Для цементации можно использовать цементные, цементно-песчаные   и   цементно-глинистые   растворы. В каждом отдельном случае необходимо выбирать как состав раствора, так и его водоцементное отношение (В/Ц), которое может изменяться от 1 до 0,4. Кроме того, инъекционные растворы должны обладать следующими характеристиками: подвижностью раствора по конусу АзНИИ 10—14 см, водоотделением в течение 2 ч 0-2 %, прочностью при сжатии после твердения в течение 28 сут 1—2 МПа. Исходная плотность таких растворов, как правило, составляет 1,60—1,85 г/см3. Все эти характеристики обусловливаются проектом.

Применение цементных растворов, как установлено практикой, не прекращало фильтрации полностью, что зависело от характера трещиноватости горных пород. Это объясняется повышенной крупностью помола цемента, который в настоящее время имеет размер частиц порядка 50 мкм, а это значит, что трещины размером 0,2 мм не будут зацементированы. Кроме того, водные растворы цемента не дают 100%-ного выхода камня, что также влечет за собой остаточную фильтрацию.

2.2. Глинизация.

В отличие от цементации глинизация может применяться для заполнения карстовых пустот только в сухих породах, способных после нагнетания глинистого раствора впитывать из него воду. В связи с этим после заполнения пустот глинистый раствор должен находиться в течение нескольких суток под гидравлическим напором.

При глинизации применяют глинистый раствор плотностью 1,2—1,3 г/см3. В результате повышения давления (более 2 МПа) вода из глинистого раствора отжимается, обезвоженное глинистое тесто плотно заполняет пустоты и придаст породе водонепроницаемость.

Глинизация так же, как и цементация, может применяться только при небольших скоростях движения грунтовых вод во избежание уноса раствора из тампонируемой зоны, т. е. в гравелистых и трещиноватых грунтах, в которых коэффициент фильтрации находится в пределах от 50 до 5000 м/сут.

2.3. Битумизация.

Способ горячей битумизации применяется в трещиноватой скальной и полускальной породах при большой скорости фильтрации. Он состоит в нагнетании через пробуренные скважины расплавленного битума, который, остывая в трещинах, сообщает породе водонепроницаемость. Так как битум не смешивается с водой, а при соприкосновении с ней образует пленку, плохо проводящую тепло, то при нагнетании он заполняет большие пустоты и каверны даже при наличии значительных скоростей движения грунтовых вод. Остывание битума в больших трещинах и пустотах происходит медленно из-за его слабой теплопроводности, и поэтому радиус распространения его значителен.

Отрицательным качеством горячей битумизации является то, что в течение последующего времени при наличии напора грунтовых вод наблюдается выдавливание битума из трещин; также из-за значительной вязкости даже расплавленный битум не может полностью заполнить трещины с раскрытием менее 1 мм, таким образом, радиус битумизации колеблется от 0,75 до 1,5 м, а водопроницаемость полностью не снимается.

 Указанные выше явления привели  к тому, что способ горячей  битумизации стал применяться  редко как в гидротехническом, так и в промышленном строительстве.

Для придания водонепроницаемости песчаным грунтам разработан способ холодной битумизации, т. е. нагнетания в песчаный грунт битумной эмульсии. Этот способ целесообразно применять тогда, когда требуется придать грунту только водонепроницаемость. Основным условием успешного применения этого способа является приготовление стабильных и однородных эмульсий. Опыты показывают, что частицы битумной эмульсии могут проникать в поры грунта, когда их диаметр в 25— 35 раз меньше среднего диаметра частиц грунта. Применение способа холодной битумизации в песках ограничивается коэффициентом фильтрации от 10 до 50 м/сут.

При наличии в настоящее время других способов, как например, силикатизации и смолизации, способ холодной битумизации не получает широкого применения, так как технология приготовления битумной эмульсии значительно сложнее технологии приготовления растворов при силикатизации и смолизации.

2.4. Силикатизация.

В 1931 г. был разработан двухрастворный способ силикатизации, сущность которого состояла в том, что в песчаный грунт любой влажности через забитую металлическую перфорированную трубу (инъектор) поочередно нагнетались раствор силиката натрия (натриевое жидкое стекло) Na2OnSiO2 и раствор хлористого кальция CaCl2. В результате химической реакции между ними в порах грунта образуется гидрогель кремниевой кислоты, и грунт быстро и прочно закрепляется. Двухрастворный способ обеспечивает высокую прочность грунта  и практически его полную водонепроницаемость. Недостатками этого способа являются высокая стоимость и большая трудоемкость работ. Поэтому его преимущественно применяют при усилении оснований под сооружениями. Закрепленный грунт имеет кубиковую прочность 1,5…3,5 МПа. Прочность закрепленного грунта не снижается при воздействии на него агрессивных вод.

Для закрепления мелких и пылеватых песков с коэффициентом фильтрации от 0,0006 до 0,006 см/сек применяют однорастворный способ. В грунт нагнетают гелеобразующий раствор из жидкого стекла и фосфорной кислоты либо из жидкого стекла, серной кислоты и сернокислого аммония.

Первая рецептура обеспечивает более быстрое гелеобразование. Прочность закрепленного грунта значительно ниже, чем при двухрастворном способе. Этот способ находит применение главным образом при устройстве противофильтрационных завес.

Однорастворный способ силикатизации используют и для закрепления   лёссовых просадочных грунтов, имеющих коэффициент фильтрации от 0,0001 до 0,0023 см/сек. При этом в грунт нагнетают раствор одного жидкого стекла.  Гелеобразование происходит за счет реакции раствора жидкого стекла с водорастворимыми солями грунта и его обменным комплексом. Роль второго раствора выполняет сам грунт.

Не рекомендуется применять силикатизацию для закрепления грунтов, пропитанных нефтяными продуктами, смолами и маслами, при наличии грунтовых вод, имеющих рН>9 при двухрастворном способе, и в случае рН>7,2 при однорастворном способе силикатизации мелких и пылеватых песков. Нецелесообразно подвергать силикатизации грунты, когда скорость грунтовых вод превышает  0,006 см/сек.

2.5. Смолизация.

Смолы, которые могут быть использованы для закрепления грунтов, должны обладать невысокой вязкостью и полимеризоваться в порах грунта при температуре от 4 до 10 °С. К таким смолам относятся: мочевино-формальдегидные (карбамидные), образующиеся в результате поликонденсации мочевины и формальдегида; фенольные, образующиеся в результате поликонденсации фенолов и альдегидов; фурановые, образующиеся при конденсации фурфурола и фурилового спирта; акриловые—производные акриловой кислоты; эпоксидные, получающиеся при конденсации эпихлоргидрина (или дихлоргидрина) с полиаминами, фенолами, полиспиртами и другими соединениями.

Самой приемлемой для закрепления грунтов по всем критериям является мочевиноформальдегидная (карбамидная) смола с различными отвердителями. Эта смола легко растворяется в воде, имеет малую вязкость, отверждается при невысокой температуре, а самое главное выпускается отечественной промышленностью в виде клеев в большом масштабе и по своей цене вполне доступна. Для широкого использования при закреплении грунтов.

Сущность способа состоит в нагнетании в грунт гелеобразующего раствора, состоящего из раствора смолы и отвердителя в виде соляной или щавелевой кислоты. Способ обеспечивает прочное закрепление, придает грунтам водонепроницаемость. Кроме того, способ позволяет закреплять карбонатные грунты. При повышенном содержании карбонатов (до 3%) проводится предварительная обработка грунта раствором кислоты в объеме, равном объему гелеобразующего раствора.

2.6. Электрохимическое закрепление грунтов.

Как установлено исследованиями, при электрохимическом закреплении грунта происходят три процесса:

1) электроосмос, в результате которого  грунт значительно обезвоживается и уплотняется; 2) реакция обмена, при которой поглощенные натрии и кальций замещаются водородом и алюминием; 3) структурообразование, являющееся результатом образования алюмогеля.

Для закрепления слабых малопроницаемых грунтов, представленных мелкими песками, суглинками и супесями, разработан способ комбинированного применения электрического тока и химических растворов, вводимых в грунт под давлением в момент наложения на него постоянного электрического тока. Обычно растворы вводят в грунт через перфорированные электроды или через забиваемые инъекторы. Распространение растворов в грунте в этом случае обусловливается движением воды от анода к катоду. Кроме закрепления грунта и придания ему водоустойчивости электрохимический способ повышает его механическую прочность. При этом большое значение имеет правильное сочетание режимов подачи растворов в грунт и пуска электрического тока, которые должны назначаться в соответствии с физико-механическими свойствами грунта.

Большое значение при использовании постоянного электрического тока имеет явление электроосмоса. Благодаря ему можно обезвоживать значительные массивы малопроницаемых грунтов при проходке траншей и вскрытии котлованов.

2.7. Технология и производство работ.

Для проведения работ по химическому закреплению грунтов применяют следующее оборудование: инъекторы, установки для бурения скважин, для чего могут быть использованы любые станки и оборудование, позволяющее проходить скважины диаметром 60—127 мм на глубину 15—25 м; пневматические молотки и бетоноломы для забивки инъекторов; насосы или пневматические установки для нагнетания растворов, тампонирующие устройства; компрессор подачей не менее 1 м3/мин с обеспечением давления 5—6 атм; силикато-разварочные установки для разварки силикат-глыбы; для газовой силикатизации баллоны с углекислым газом; шланги; соединительные части; краны; контрольно-измерительная аппаратура (манометры, термометры, ареометры); емкости для приготовления и хранения растворов; гидравлические домкраты грузоподъемностью 5—10 т или шарнирный станок для извлечения инъекторов из закрепленного грунта.

Информация о работе Методика искусственного улучшения грунтов оснований