Автор работы: Пользователь скрыл имя, 16 Ноября 2013 в 15:39, курс лекций
Работа содержит лекционный материал по 7 темам.
По конструкции
башен различают краны с
У кранов с поворотной башней (рис. 1, а) опорно-поворотное устройство 1, на которое опирается поворотная часть крана, расположено внизу на ходовой раме крана или на портале. Поворотная часть кранов включает (кроме кранов 8-й размерной группы) поворотную платформу 2, на которой размещены грузовая 12 и стреловая 3 лебедки, механизм поворота, плиты противовеса 4, башня 11 с оголовком 7, распоркой 6 и стрелой 9. У кранов с неповоротной башней (рис. 1, б) опорно-поворотное устройство 1 расположено в верхней части башни.
Поворотная часть таких кранов включает поворотных оголовок 7, механизм поворота, стрелу 9 и противовесную консоль 15, на которой размещены лебедки и противовес 4, служащий для уменьшения изгибающего момента, действующего на башню крана. На ходовой раме 13 кранов с неповоротной башней уложены плиты балласта 19, а с боковой стороны башни расположены монтажная стойка 18 с лебедкой и полиспастом, предназначенная для поднятия и опускания верхней части крана при его монтаже и демонтаже. Ходовые рамы опираются на ходовые тележки 14, которые обеспечивают передвижение кранов по подкрановым путям.
Рис. 1. Типы и параметры башенных кранов: а – с поворотной башней; б – с неповоротной башней
По типу стрел различают краны с подъемной (маневровой), балочной и шарнирно сочлененной стрелами. У кранов с подъемной стрелой (см. рис.1,а), к головным блокам которой подвешена крюковая подвеска 10 (грузозахватный орган крана), вылет изменяется поворотом стрелы в вертикальной плоскости относительно опорного шарнира с помощью стреловой лебедки 3,стрелового полиспаста 5 и стрелового расчала 8. У кранов с балочной стрелой (см. рис. 1, б) вылет изменяется при перемещении по нижним ездовым поясам стрелы грузовой тележки 17с подвешенной крюковой подвеской 10. Перемещение грузовой тележки осуществляется с помощью тележечной лебедки 16 и каната. У кранов с шарнирно сочлененной стрелой стрела состоит из шарнирно соединенных основной и головной (гуська) частей, которые могут быть выполнены в виде подъемной или балочной стрелы. В первом случае вылет изменяется поворотом (подъемом) всей шарнирно сочлененной стрелы с крюковой подвеской на головных блоках, во втором - сочетанием подъема всей стрелы с последующим перемещением грузовой тележки по балкам головной секции стрелы. Подъем и опускание груза осуществляются с помощью грузовой лебедки 12, грузового каната и крюковой подвески.
По способу установки краны разделяют на стационарные (рис. 2,а), самоподъемные (рис. 2, б) и передвижные (рис. 2, в). Передвижные башенные краны по типу ходового устройства подразделяются на рельсовые, автомобильные, на специальном шасси автомобильного типа, пневмоколесные и гусеничные. Рельсовые краны наиболее распространены. Стационарные краны не имеют ходового устройства и устанавливаются вблизи строящегося здания или сооружения на фундаменте. При возведении зданий большой высоты передвижные и стационарные краны для повышения их прочности и устойчивости прикрепляют к возводимому зданию. Прикрепляемые к зданию стационарные краны называют приставными; прикрепляемые к зданию передвижные краны, работающие как приставные, называют универсальными. Самоподъемные краны применяют в основном на строительстве зданий и сооружений большой высоты, имеющих металлический или мощный железобетонный монолитный каркас, который служит их опорой. Перемещение самоподъемных кранов вверх осуществляется с помощью собственных механизмов по мере возведения здания.
Рис. 2. Классификация башенных кранов по способу установки: а – стационарные; б – самоподъемные; в – передвижные
Рис. 1. Типы и параметры башенных кранов: а – с поворотной башней; б – с неповоротной башней
К основным параметрам кранов относятся (см. рис. 1): вылет L - расстояние по горизонтали от оси вращения поворотной части крана до вертикальной оси крюковой подвески; грузоподъемность Q - наибольшая допустимая для соответствующего вылета масса груза, на подъем которого рассчитан кран; грузовой момент М - произведение грузоподъемности Q на соответствующий вылет L (часто используется в качестве главного обобщающего параметра крана); высота подъема Н и глубина опускания h - соответственно расстояние по вертикали от уровня стоянки крана (головки рельса для рельсовых кранов, нижней опоры самоподъемного крана, пути перемещения пневмоколесных и гусеничных кранов) до центра зева крюка, находящегося в верхнем или нижнем крайнем рабочем положении; диапазон подъема D - сумма высоты подъема H и глубины опускания h; колея К - расстояние между продольными осями, проходящими через середину опорных поверхностей ходового устройства крана, измеряемое по осям рельсов у рельсовых кранов и по продольным осям пневмоколес или гусениц у автомобильных, пневмоколесных и гусеничных кранов; база В - расстояние между вертикальными осями передних и задних колес (у пневмоколесных и автомобильных кранов), ведущими и ведомыми звездочками гусениц (у гусеничных кранов) или ходовых тележек, установленных на одном рельсе (у рельсовых кранов); задний габарит l - наибольший радиус поворотной части (поворотной платформы или противовесной консоли) со стороны, противоположной стреле; vп - скорость подъема и опускания груза, равного максимальной грузоподъемности крана (при установке на кране многоскоростных лебедок указываются все скорости и массы грузов, соответствующие каждой скорости подъема и опускания); скорость посадки груза vM - наименьшая скорость плавной посадки груза при его наводке и монтаже; частота вращения n поворотной части крана при максимальном вылете с грузом на крюке; скорость передвижения крана vд - рабочая скорость передвижения с грузом по горизонтальному пути; скорость передвижения грузовой тележки vт с наибольшим рабочим грузом по балочной стреле; скорость изменения вылета vг стрелы (у кранов с подъемной стрелой) от наибольшего до наименьшего; установленная мощность Ру (суммарная мощность одновременно включаемых механизмов крана); наименьший радиус закругления R оси внутреннего рельса на криволинейном участке подкранового пути; радиус поворота Rп - наименьший радиус окружности, описываемой внешним передним колесом автомобильных или пневмоколесных кранов при изменении направления движения; конструктивная масса тк - масса крана без балласта, противовеса и съемных устройств в не заправленном состоянии; общая (полная) масса крана тo в рабочем состоянии; нагрузка на колесо Fк - наибольшая вертикальная нагрузка на ходовое колесо при работе крана в наиболее неблагоприятном его положении; допустимая скорость ветра vв на высоте 10 м от земли для рабочего и нерабочего состояний, при которой кран сохраняет прочность и устойчивость в процессе эксплуатации.
Башенные краны всех размерных групп оборудуются приборами безопасности. К ним относятся ограничители крайних положений всех видов движения, расположенные перед упорами: ограничители передвижения крана, грузовой и контргрузовой тележек, угла наклона стрелы, поворота, высоты подъема, выдвижения башни, передвижения специального подъемника и др. Для защиты кранов от перегрузки при подъеме груза на определенных вылетах применяются ограничители грузоподъемности и грузового момента. Краны также оснащаются тормозами на всех механизмах рабочих движений, нулевой и концевой электрозащитой, аварийными кнопками и рубильниками, анемометрами с автоматическим определением опасных порывов ветра и подачей звуковых и световых сигналов для предупреждения машиниста об опасности, молниеприемниками, полуавтоматическими рельсовыми захватами на ходовых тележках, указателями вылета крюка и грузоподъемности на данном вылете при соответствующей высоте подъема груза и т. д.
Сменная эксплуатационная производительность крана, т/см,
Пэ = tсмQnkтkв,
где tсм - продолжительность смены, ч; Q - грузоподъемность крана, т; kт - коэффициент использования крана по грузоподъемности; kв - коэффициент использования крана по времени в течение смены, n = 3600/Тц - число циклов, совершаемых краном за один час работы.
Общее время цикла складывается из машинного времени tм, времени, расходуемого на выполнение ручных операций tp, и времени на вспомогательные операции tв:
Tu = tм + tp + tв;Z
tм = ((H1/v1) + (H2/v2) + (L1/v3) + (L2/v4) + (2α/360n))k;
tp = t3 + tу + t0,
где z - число вспомогательных машинных операций (подъем, передвижение, повороте грузом, обратный поворот, опускание и т. д.); Н1 и Н2 - соответственно высота подъема и опускания крюка, м; L1 и L2 - пути передвижения грузовой тележки (или изменение вылета) и крана, м; v1, v2, v3, v4 - соответственно скорости подъема и опускания груза, передвижения грузовой тележки (или изменения вылета) и крана, м/мин; α - угол поворота стрелы (туда и обратно), град; n - частота вращения стрелы крана, мин-1; k - коэффициент совмещения операций (зависит от технических возможностей крана и мастерства машиниста); t3 - время строповки груза, мин; ty - время наводки и установки груза в проектное положение, мин; t0 - время расстроповки груза, мин.
Устойчивость
передвижных кранов опрокидыванию
обеспечивается их собственной массой
и проверяется по правилам Госгортехнадзора
в рабочем и нерабочем
Грузовая устойчивость характеризует устойчивость крана с подвешенным грузом (и откинутым противовесом у кранов-трубоукладчиков) при возможном опрокидывании его в сторону груза.
Собственная устойчивость характеризует устойчивость крана в нерабочем состоянии (без рабочего груза) при возможном опрокидывании его в сторону противовесной части крана (контгруза).
Показателем степени устойчивости является коэффициент грузовой устойчивости k1, представляющий собой отношение восстанавливающего момента Мв , создаваемого массой всех частей крана, с учетом ряда дополнительных нагрузок (ветровая нагрузка, инерционные силы, возникающие при пуске или торможении исполнительных механизмов, вращении поворотной части и движении крана), а также влияния наибольшего допускаемого при работе крана уклона площадки или подкранового пути (до 2° для башенных кранов, до 3° для самоходных стреловых кранов и до 7° для кранов-трубоукладчиков) к опрокидывающему моменту М0, создаваемому массой рабочего груза.
Определение опрокидывающего и восстанавливающего моментов производится относительно ребра опрокидывания (головки рельса подкранового пути для башенных кранов, точек касания опорных домкратов аутригеров с подпятниками опор для стреловых самоходных кранов на пневмоходу, края катка левой гусеницы для кранов-трубоукладчиков и т. д.).
Числовое значение коэффициента грузовой устойчивости крана подсчитывается при расположении стрелы в плане перпендикулярно ребру опрокидывания:
k1 = (Mв/Mo) ≥ 1,15.
При работе крана на горизонтальной площадке, без учета дополнительных нагрузок и уклона пути, коэффициент грузовой устойчивости должен быть не менее 1,4.
Коэффициент собственной устойчивости k2 представляет собой отношение момента М 'в, создаваемого массой всех частей крана с учетом влияния наибольшего допускаемого уклона площадки (подкранового пути) в сторону опрокидывания, к моменту, создаваемому ветровой нагрузкой M'о, определяемому относительно ребра опрокидывания:
k2 = M′в/M′o ≥ 1,15.
Ветровая нагрузка, действующая на кран и груз, определяется в соответствии с ГОСТ 1451-77 «Краны грузоподъемные. Нагрузка ветровая. Нормы и метод определения».
Самоходные стреловые краны.
Стреловые самоходные краны представляют собой стреловое или башенно-стреловое крановое оборудование, смонтированное на самоходном гусеничном или пневмоколесном шасси. Такие краны являются основными грузоподъемными машинами на строительных площадках и трассах строительства различных коммуникаций. Широкое распространение стреловых самоходных кранов обеспечили: автономность привода, большая грузоподъемность (до 250 т), способность передвигаться вместе с грузом, высокие маневренность и мобильность, широкий диапазон параметров, легкость перебазировки с одного объекта на другой, возможность работы с различными видами сменного рабочего оборудования (универсально) и т. д.
Различают стреловые самоходные краны общего назначения для строительно-монтажных и погрузочно-разгрузочных работ широкого профиля и специальные для выполнения технологических операций определенного вида (краны-трубоукладчики, железнодорожные и плавучие краны и т. п.).
Стреловые самоходные краны общего назначения классифицируют следующим образом; по грузоподъемности - легкие (грузоподъемностью 10 т), средние (грузоподъемностью 10...25 т) и тяжелые (грузоподъемностью выше 25 т); по типу ходового устройства - автомобильные (на стандартных шасси грузовых автомобилей), тракторные (навесные на серийные тракторы), на шасси автомобильного типа, пневмоколесные и гусеничные, имеющие специальные шасси; по количеству и расположению силовых установок - с одной силовой установкой на ходовом устройстве (шасси), с одной силовой установкой на поворотной части и с двумя силовыми установками; по количеству приводных двигателей механизмов - с одно- и многомоторным приводами; по типу привода - с механическим, электрическим и гидравлическим приводами; по количеству и расположению кабин управления - с кабинами только на шасси, только на поворотной платформе, на шасси и на поворотной платформе; по конструкции стрелы - со стрелой неизменяемой длины, с выдвижной и телескопической стрелами; по способу подвески стрелы - с гибкой (на канатных полиспастах) и жесткой (с помощью гидроцилиндров) подвеской.
Основные типоразмеры
и параметры современных
Рис. 2. Схемы стреловых самоходных кранов: а – гусеничного с гибкой подвеской стрелового оборудования; б – пневмоколесного с жесткой подвеской стрелового оборудования
Каждый стреловой самоходный кран (рис. 2) состоит из следующих основных частей: ходового устройства 1, поворотной платформы 13 (с размещеными на ней силовой установкой 10, узлами привода 9, механизмами и кабиной машиниста 17 с пультом управления), опорно-поворотного устройства и сменного рабочего оборудования. Исполнительными механизмами кранов являются: механизм подъема груза, изменения вылета стрелы (крюка), вращения поворотной платформы и передвижения крана.
Стреловые самоходные краны могут осуществлять следующие рабочие операции: подъем и опускание груза; изменение угла наклона стрелы при изменении вылета; поворот стрелы в плане на 360°; выдвижение телескопической стрелы с грузом; передвижение крана с грузом. Отдельные операции могут быть совмещены (например, подъем груза или стрелы с поворотом стрелы в плане). Шасси кранов 14 с пневмоколесным ходовым устройством (рис. 2, б), оборудуется выносными опорами-аутригерами 18 в виде поворотных (откидных) или выдвижных кронштейнов с опорными винтовыми или гидравлическими домами на концах. Аутригеры снижают нагрузки на пневмоколеса, увеличивают опорную базу и устойчивость крана. При работе без выносных опор грузоподъемность крана резко снижается и составляет 20...30 % от номинальной.