Автор работы: Пользователь скрыл имя, 09 Июня 2014 в 15:09, реферат
Обеспечение долговечности строительных материалов и конструкций является одной из основных проблем повышения эффективности строительства. Многообразие номенклатуры материалов и условий их эксплуатации в промышленных зданиях, транспортных сооружениях и других объектах, в том числе и специального строительства, требует детального и глубокого изучения химической стойкости этих материалов под воздействием твёрдых, газообразных или жидких агрессивных сред. Основными средами, действующими на строительные материалы, являются воздух и вода.
I. Водные агрессивные среды……………………………………………............2
Природные поверхностные и грунтовые воды. Промышленные сточные воды……………………………………………………………………………….2
Водные растворы минеральных и органических кислот, щелочей и солей…..4
Органические растворители, нефтепродукты………………………………..5
Временная, постоянная и общая жесткость воды…………………………...6
Степень агрессивности воздействия жидких сред……………………..…….6
II. Коррозия цементного камня и бетона в водных средах……………………7
Физическая коррозия……………………………………………………………..8
Химическая коррозия…………………………………………………………....10
Электрохимическая и электроосмотическая коррозия……………………...13
Биологическая коррозия………………………………………………………...13
Защита бетона от коррозии…………………………………………………..13
В индустриальных районах коррозионное влияние на бетонные конструкции оказывают газы, например сернистые, сероводород, хлористый водород, аэрозоли солей, например морской воды и др.
Среди внешних факторов, обусловливающих коррозию цементного камня, можно выделить физические и химические факторы. Физические факторы коррозии охватывают температурные (попеременное замерзание и оттаивание, нагрев и охлаждение) и влажностные колебания среды, ведущие к появлению деформаций материала и его разрушению. К внешним факторам следует отнести и разрушение изделия за счет подсоса и кристаллизации солей в порах и капиллярах бетонного тела — так называемая солевая коррозия.
Кроме того, влияют механические воздействия — удары волн, выветривание, истирание, а также биологически вредные воздействия бактерий. Все это внешние причины коррозии и разрушения цементного камня.
К разрушению цементного камня (бетона) приводят и внутренние факторы — его высокая водопроницаемость, взаимодействие щелочей цемента с кремнеземом заполнителя, изменение объема из-за различия температурного расширения цемента и заполнителя.
Коррозия цементного камня и бетона делится на: физическую, химическую, электрохимическую и биологическую коррозии.
Физическая коррозия.
К числу физических факторов, вызывающих коррозию цементного камня и бетона, относят их попеременное увлажнение и высыхание, которое сопровождается деформациями усадки и набухания материала, отложение растворимых солей в порах цементного камня, попеременное замерзание и оттаивание бетона, особенно в водонасыщенном состоянии.
Попеременному замораживанию и оттаиванию (влияние пониженных температур) подвергаются практически все открытые сооружения, служащие в условиях атмосферного воздействия. Особенно опасная ситуация возникает при одновременном воздействии низкой температуры и растворов солей, например при работе бетона в морских сооружениях. Суть действия пониженной температуры на бетон заключается в возникновении деформаций расширения замерзающей воды в опасных порах, которая может привести к разрушению камня.
Сильное внутреннее
напряжение усиливается при
Основную роль в разрушении цементного камня при действии низких температур играют общая пористость и характер капиллярно-пористой структуры материала: в искусственном камне имеются поры, наиболее опасные и ответственные за развитие разрушения материала. Поскольку морозостойкость искусственного камня зависит от характера и величины общей пористости, то, снижая пористость, можно добиться существенного повышения морозостойкости.
Морозостойкость цементного камня (бетона) зависит от качества цементного раствора и заполнителей. Качество заполнителей может колебаться в широких пределах, так как не существует прямой зависимости между долговечностью заполнителя и бетона. Однако существует общее мнение, что заполнители с большой внутренней поверхностью, легко доступной для воды, являются менее морозостойкими.
Попеременное увлажнение и высыхание цементного камня и бетона вследствие, например, климатических особенностей атмосферы или специфических условий работы конструкции вызывает соответственно деформации — набухание или усадку. Вопросы, связанные с набуханием и усадкой собственно цемента, рассматриваются при изучении строительно-технических свойств цемента. Что касается бетонного тела, то при нарушении влажностных равновесий системы бетон — среда, например при неравномерной диффузии влаги в объем бетона, в его толще возникают градиенты влажности, приводящие к деформациям набухания при насыщении водой или усадки — при высушивании, снижающим прочность бетона. Величину деформации набухания и усадки можно заметно нейтрализовать, меняя количество и качество заполнителя, вид и расход цемента, водоцементное отношение.
Кристаллизация солей также относится к физическим видам коррозии. Капиллярные подсосы воды в той части бетонной конструкции, которая работает в грунте, приводят к возникновению такого типа коррозии, если в грунтовых водах большая концентрация водорастворимых солей, высокий уровень минерализованных вод, при этом климат данного района сухой или жаркий. Солевые растворы в этом случае регулярно поступают в поры бетона, одновременно происходит испарение воды. Выделяющиеся из раствора соединения при кристаллизации оказывают давление на стенки пор и капилляров, что может вызвать деформацию бетона, а иногда и его разрушение. Особенно сильным оказывается давление кристаллизации, когда образующиеся соли вначале безводны, а затем переходят в кристаллогидраты. Такой вид коррозии можно предотвратить, используя бетоны с малой открытой пористостью или защищая их гидроизоляцией.
Химическая коррозия.
Действие (агрессия) воды и водных растворов (неорганических и органических веществ — кислот, солей, оснований), а также кислых газов в условиях службы бетонных и железобетонных конструкций приводит к разрушению бетонного и цементного камня. Причины разрушения (коррозии) заключаются в химическом взаимодействии агрессивной среды и составляющих бетона.
В. М. Москвин разделяет коррозионные процессы, возникающие в цементных бетонах при действии водной среды, по основным признакам на три группы.
Коррозия первого вида — разрушение цементного камня в результате растворения и вымывания некоторых его составных частей (коррозия выщелачивания). К первому виду коррозии он относит процессы, происходящие в бетоне под воздействием вод с малой временной жесткостью (мягких вод), в результате действия которых составные части цементного камня растворяются и уносятся сквозь толщу бетона при фильтрации.
Коррозия второго вида — процессы, развивающиеся в бетоне под действием вод, содержащих вещества, вступающие в химические реакции с цементным камнем. Образующиеся при этом продукты реакций либо легкорастворимы и уносятся водой, либо выделяются на месте реакции в виде аморфных масс, не обладающих вяжущими свойствами. К этой группе могут быть отнесены, например, процессы коррозии, связанные с воздействием на бетон различных кислот, магнезиальных и других солей.
Коррозия третьего вида — процессы коррозии, вызванные обменными реакциями с составляющими цементного камня, дающими продукты, которые, кристаллизуясь в порах и капиллярах, разрушают его. К этому же виду относятся процессы коррозии, обусловленные отложением в порах камня солей, выделяющихся из испаряющихся растворов, насыщающих бетой.
Обычно на бетонные конструкции одновременно воздействуют многие агрессивные факторы, но один из них обычно является основным. Чаще всего это процессы, вызывающие коррозию II вида.
При изучении химических факторов коррозии бетона следует рассматривать не только химический и минералогический составы бетона, его капиллярно-пористую структуру, но и основу агрессивной среды, в которой, как это следует из опыта работы бетонных сооружений, большую роль играют ионы магния, натрия, алюминия, аммония, меди, железа, водорода, гидроксила, сульфатные, карбонатные, бикарбонатные, хлористые анионы. Опасны также все виды кислых газов — углекислый, сернистый, сероводород.
В. В. Кинд дает более подробную классификацию основных видов коррозии бетона под действием природных вод:
1) коррозия выщелачивания, вызываемая растворением гидроксида кальция, содержащегося в цементном камне, и выносом его из бетона.
Чем выше концентрация извести в порах цементного камня, тем выше скорость выщелачивания. Низкоосновные гидраты кальция имеют меньшую равновесную растворимость. Известь связывается, а основность понижается в тех случаях, когда в цемент вводятся активные кремнеземистые добавки, а при высоких температурах и кварцевый песок. Таким образом, более стойкими против коррозии выщелачивания являются низкоосновные цементы (пуццолановые, шлакопесчанистые, известковокремнеземистые).
Более агрессивными в смысле выщелачивания являются «мягкие» воды. Растворимость извести повышается в присутствии хлористого натрия.
Облегченные цементы менее стойки к выщелачиванию, за исключением тех у которых в качестве облегчающего компонента использована какая-либо активная кремнеземистая добавка.
2) кислотная коррозия, возникает под действием различных неорганических и органических кислот, вступающих в химическое взаимодействие с гидроксидом кальция, а также с другими соединениями цементного камня. Этот вид коррозии в зависимости от силы той или иной кислоты, определяемой показателями концентрации ионов водорода рН, может протекать очень интенсивно.
3) углекислотная коррозия, обусловлена действием на цементный камень углекислоты и являющаяся частным случаем кислотной коррозии.
В пластовых водах, как правило присутствует то или иное количество углекислого газа. Он действует разрушающе, поскольку понижает содержание Са(ОН)2 окисляя ее сначала до СаСО3, которая мало растворима, что будет вызывать понижение основности гидратов цемента.
Углекислая коррозия воздействует на бетон тем слабее, чем больше в водном растворе гидрокарбонатов кальция и магния.
4) сульфатная коррозия, связана с образованием соединений кристаллизующихся с увеличением объема. Примером такой коррозии являются взаимодействие с сульфатами кальция и натрия. Известно, что гидроалюминаты кальция могут присоединять гипс и образовывать гидросульфоалюминат. Последний кристаллизуется с увеличением объема, что вызывает внутренние напряжения и разрушение цементного камня.
Однако не всегда наличие гидросульфоалюмината кальция в цементном камне говорит и сульфатной коррозии. Это вещество имеется в первичной структуре цементного камня. Только увеличение количества гидросульфатоалюмината говорит о происходящей сульфоалюминатной коррозии.
Одним из методов борьбы с сульфатной коррозией является понижение содержания трехкальциевого алюмината (не более 5%). При этом содержание плавней компенсируется за счет увеличения содержания окиси железа.
Наличие в пластовых водах хлоридов уменьшает отрицательное влияние сульфатов.
5) магнезиальная коррозия,
подразделяемая на собственно
магнезиальную, вызываемую действием
катионов магния при
Если в окружающей цементный камень среде содержатся вещества, образующие с Са(ОН)2 малорастворимые соединения, то концентрация извести в ней будет поддерживаться на очень низком уровне.
Стойкость вяжущего к этому виду коррозии понижается при введении активных минеральных добавок.
Шлаковые цементы по магнезиальной стойкости мало уступают портландцементу. Дело в том, что при магнезиальном разложении шлаковых гидросиликатов образуется значительное количество кремнекислоты, отличающейся благодаря особой структуре повышенной плотностью. Она оказывает существенное кольматирующее действие. Однако и в этом случае целесообразно повышать основность шлака. Добавлять глину и активные минеральные вещества к шлаку в этом случае недопустимо.
Все эти виды коррозии возможны в результате действия не только природных, но и промышленных и бытовых сточных вод. Кроме приведенных видов коррозии может иметь значение и кислотно-гипсовая коррозия под действием серной кислоты, а также сероводородная коррозия, имеющая свои особенности.
Электрохимическая и электроосмотическая коррозия.
Источник – блуждающие токи (промышленные сети). Система обсадная колонна, цементный камень – земля являются проводниками. В этой системе всегда возможен перенос ионов, отсюда возможны и электрохимическая и электроосмотическая коррозии. Следует отметить, что цементные камни, бетоны (фундаменты) обладают как правило определенным электрическим потенциалом по отношению к земле.
Биологическая коррозия.
Этот вид коррозии изучен мало. Однако, видимо сводится в конечном итоге к какому либо химическому виду.
Так имеется много бактерий, которые выделяют углекислоту, что повлечет углекислотную коррозию. Некоторые бактерии могут окислять сульфаты сначала до сероводорода, а затем до серной кислоты. Отсюда и характер разрушения камня.
Следует подчеркнуть, что разрушающее влияние на бетон различных агрессивных факторов часто усиливается его напряженным состоянием, возникающим под действием механических нагрузок.
Защита бетона от коррозии.
Защита бетона и других материалов от коррозии вызывает большие расходы. Например, при строительстве химических заводов на антикоррозионную защиту зданий и аппаратов расходуется около 10...15% от общей стоимости строительства. Поэтому при строительстве зданий и сооружений необходимо прежде всего определить характер возможного действия среды на бетон, а затем разработать и осуществить нужные меры для предотвращения коррозии, которые в общем виде сводятся к следующему:
1) правильный выбор цемента,
2) изготовление особо плотного бетона,
3) применение защитных покрытий.
Информация о работе Коррозия цементного камня и бетона в водных средах