Автор работы: Пользователь скрыл имя, 14 Мая 2013 в 21:50, контрольная работа
Определить число неизвестных и выбрать основную систему метода перемещений.
Построить необходимые единичные и грузовые эпюры изгибающих моментов в основной системе.
Записать систему канонических уравнений метода перемещений и вычислить ее коэффициенты из условий равновесия частей рамы.
Решить полученную систему канонических уравнений.
Построить окончательные эпюры изгибающих моментов М, поперечных Q и продольных N сил.
Проверить полученные результаты, осуществив деформационную и статическую проверки.
Дано.
2
3.
Расчет плоской рамы методом перемещений.
2
3.1.
Определение числа неизвестных перемещений.
2
3.2.
Получение основной и эквивалентной системы метода перемещений.
3
3.3.
Составление канонических уравнений метода перемещений.
3
3.4.
Вычисление коэффициентов канонических уравнений.
3
3.5.
Решение системы канонических уравнений.
5
3.6
Построение окончательной эпюры изгибающих моментов Мок для заданной системы
5
3.7
Построение эпюры Q по эпюре М ок
6
3.8
Построение эпюры N для заданной рамы
7
3.9
Проверка равновесия рамы в целом.
7
РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ МИНИСТЕРСТВА ПУТЕЙ СООБЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
Факультет: ТРАНСПОРТНЫХ СООРУЖЕНИЙ И ЗДАНИЙ
Специальность: ПРОМЫШЛЕННОЕ И ГРАЖДАНСКОЕ СТРОИТЕЛЬСТВО
КОНТРОЛЬНАЯ РАБОТА №1
по дисциплине: СТРОИТЕЛЬНАЯ МЕХАНИКА
Владимир 2006 год. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Содержание.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Выполнил |
Кучер Ю.Р. |
02- ПГС-33358 |
лист | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Проверил |
1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Расчет плоской рамы методом перемещений
Для статистически неопределимой рамы (рис.1) требуется:
Дано: h = 4,4 м L = l1 = 3,8 м P1 = 50 кН q = 2 l2 / l1 = 1,25; l2 = l = 4.75 м P2 / P1 = 1; P2 = 50 кН Yр / Yс = 1.75 Рассчитаем плоскую раму методом перемещений.
1) Определение числа неизвестных перемещений.
Число неизвестных перемещений определяется по формуле:
n = nу + nл где: nу – число неизвестных углов поворота, равное количеству жестких узлов рамы, исключая опорные nл - число независимых линейных перемещений узлов рамы, равное степени геометрической изменяемости шарнирной схемы рамы, полученной из заданной путем введения во все жесткие узлы, включая опорные, полных шарниров.
В заданной раме nу =2. Для определения nл вводим во все жесткие узлы, включая опорные, полные шарниры и находим и находим степень геометрической изменяемости полученной шарнирной схемы рамы (рис.2) по формуле:
nл = W = 2 • У – С –Соп где: У – число узлов в шарнирной схеме рамы, включая и опорные С – число стержней в шарнирной схеме рамы Соп – число опорных связей с землей шарнирной схемы рамы
nл = 2 • 5 – 4 – 5 = 1
Полученное значение говорит о том, что шарнирная схема один раз геометрически изменяема. Таким образом, заданная рама имеет два угловых и одно линейное перемещение, а общее количество неизвестных будет равно: | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Выполнил |
Кучер Ю.Р. |
02- ПГС-33358 |
лист | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Проверил |
2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
n = nу + nл = 2 + 1 = 3
2) Получение основной и эквивалентной системы метода перемещений.
Основную систему метода перемещений получаем путем постановки дополнительной заделки в узлах В и С, препятствующих неизвестным угловым перемещениям. Загрузив основную систему внешней нагрузкой и неизвестными перемещениями и, равными по величине действительным перемещениям заданной системы, получим эквивалентную систему, деформирующуюся тождественно заданной.
3) Составление канонических уравнений метода перемещений.
В развернутом виде канонические уравнения имеют вид:
⌠r11 • Z1 + r12 • Z2 + R1pq = 0 ⌠ r21 • Z1 + r22 • Z2 + R2pq = 0
4) Вычисление коэффициентов канонических уравнений.
Для определения коэффициентов необходимо построить единичные и грузовые эпюры изгибающих моментов в основной системе метода перемещений. Для их построения используются таблицы эпюр изгибающих моментов и реакций статически неопределимых балок (см. табл.2.4 "Строительная механика. Основы теории с примерами расчетов" А.Е.Саргсян и др.)
Единичные и грузовые эпюры изгибающих моментов, построенные в основной системе, показаны на рисунках 5-7
Находим матрицы единичных эпюр
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Выполнил |
Кучер Ю.Р. |
02- ПГС-33358 |
лист | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Проверил |
3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Находим матрицу Lm
Находим коэффициенты канонических уравнений по формуле: К = li • EYc / 6 • EYi К 1-2 = l1-2 • EYc / 6EYc = 4.4 / 6 - 0.733333 К3-4 = l3-4 • EYc / 6EYp =3.8 / 6 • 1.75 = 0.3619048 К5-6 = l5-6 • EYc / 6EYc = 2.2 / 6 = 0.366667 К7-8 = l7-8 • EYc / 6EYc = 2.2 / 6 = 0.366667 К9-10 = l9-10 • EYc / 6EYp = 4.75 / 6 • 1.75 = 0.452881
Для определения реактивного момента r11, возникающего в дополнительно поставленной заделке узла В от поворота этого узла на угол Z1=1, вырезаем узел В из эпюры М1 (рис.8) и решаем уравнение равновесия r11 = 3EYc / h + 4EYр / l 1 r11 = EYc (3 / 4,4 + 7 / 3,8) Реактивный момент в дополнительно поставленной заделке узла В от линейного смещения Z2=1, узлов В и С определяем из условия равновесия узла В вырезанного из эпюры М2 (рис.9). r12 = 2EYр / l1 r12 = 2EYр / 3,8 = EYс2 • 1,75 / 3,8 = EYс (3,5 / 3,8) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Выполнил |
Кучер Ю.Р. |
02- ПГС-33358 |
лист | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Проверил |
4 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Такая же по величине, согласно теореме о взаимности реакций и реактивная сила r21.
Для определения реактивного момента r22, возникающего в дополнительно поставленной заделке узла С от поворота этого узла на угол Z2=1, вырезаем узел С из эпюры М2 (рис.10) и решаем уравнение равновесия.
r22 = 4EYр / l1 + 4EYc / h + 3EYр / l2 r22 = EYc (7 / 3,8+1 / 1,1+5,25 / 4,75)
Реактивный момент, возникающий в заделке узла В от внешних нагрузок P и q, найдем из уравнения равновесия узла В, вырезанного из эпюры М (рис.11).
R1 = - q • l12 / 8= - 3,61
Реактивный момент, возникающий в заделке узла С от внешних нагрузок P и q, найдем из уравнения равновесия узла С, вырезанного из эпюры М (рис.12).
R2 = - P • h / 8 + q • l12 / 8 = - 27,5 + 3,61 = - 23,89
5) Решение системы канонических уравнений.
Подставим найденные значения коэффициентов в канонические уравнения и получим
Z1 = 1,590435 / EYр Z2 = 11,2172 / EYр
6) Построение
окончательной эпюры
Построение окончательной эпюры изгибающих моментов Мок для заданной системы производим на основании принципа независимости действия сил по формуле:
Mок = M1 • Z1 + M2 • Z2 + MPq
По найденным значениям строим эпюру Mок (рис.13). Для проверки вырезаем узел В из эпюры Мок, прикладываем действующие в нем изгибающие моменты и проверяем равновесие узла (рис 15) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Выполнил |
Кучер Ю.Р. |
02- ПГС-33358 |
лист | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Проверил |
5 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7) Построение эпюры Q по эпюре М ок Эпюру Q для заданной рамы по эпюре Мок строим, используя формулу:
Q(z) = Q0(z) + (Mпр – Mлев) / l + q • z
Участок 1-2 q = 0 Mпр = 0,61965 кН • м Mлев = 0 l = 4.4м Q1-2 = 0 + (0.61965 – 0) / 4,4 + 0 = 0.141 Q1 = 0.141 Q2 = 0.141
Участок 3-4 q = 2 кН • м Mпр = -14,581 кН • м Mлев = 0,61965 кН • м l = 3,8 м Q3-4 = q • l / 2 – q • z + (Mпр – Mлев) / l Q3-4 = 2 • 3,8 / 2 + ( –14,581 – 0) / 3,8 z=0 Q3 =2 • 3.8 / 2 - (14.581 + 0) / 3.8 = - 0.037 z=3.8 Q4 = 2 • 3.8 / 2 – 2 • 3.8 - (14.581 + 0) / 3.8 = 7,563 Участок 5-6 q = 0 Mпр = 28,9568 кН • м Mлев = -21,673 кН • м l = h / 2 = 2,2 м Q5-6 = 0 + (28,9568+21,673) / 2,2 + 0 = 23,01 Q5 = 23,01 Q6 = 23,01
Участок 7-8 q=0 Mпр = -30,414 кН • м Mлев = 28,9568 кН • м l = h / 2 = 2,2 м Q7-8 = 0 + (-30,414 - 28,9568) / 2,2 + 0 = -26,987 Q7 = -26,987 Q8 = -26,987
Участок 9-10 q = 0 Mпр = 0 Mлев = 7,08455 кН • м l = 4,75 м Q9-10 = 0 + (0 – 7,08455) / 4,75 + 0 =1,49 Q9 = 1,49 Q10 = 1,49 По найденным значениям строим эпюру Q (рис.16) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Выполнил |
Кучер Ю.Р. |
02- ПГС-33358 |
лист | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Проверил |
6 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8) Построение эпюры N для заданной рамы Методом сечений находим: Участок 1-2 N12 = - Q3 = 0.037 Участок 3-4 N34 = 0 Участок 5-6-7-8 N58 = Q4 - Q9 = 7.563 - 1.49 = - 6.073 Участок 9-10 N9-10 = 0 По этим расчетам строим эпюру нормальных сил (рис. 17)
9) Проверка равновесия рамы в целом. Проверим равновесие рамы в целом. Для этого освободим раму от опор и покажем внутренние силовые факторы в опорных сечениях (рис.18). Под действием этих сил и заданной нагрузки рама должна находиться в равновесии. ΣZ = 23,01 + 26,987 – 50 = 0 ΣY = 0,037 – 2 • 3,8 + 1,49 + 6,073 = 0 ΣMд = 0,037 • 3,8 – 2 • 3,8 • 1,9 + 1,49 • 4,75 – 50 • 2,2 - 30,414 + 23,01 • 3 + 26,987 • 3 = = 0 Условия удовлетворяются, следовательно все эпюры построены верно. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Выполнил |
Кучер Ю.Р. |
02- ПГС-33358 |
лист | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Проверил |
7 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Выполнил |
Кучер Ю.Р. |
02- ПГС-33358 |
лист | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Проверил |
8 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Выполнил |
Кучер Ю.Р. |
02- ПГС-33358 |
лист | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Проверил |
9 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Выполнил |
Кучер Ю.Р. |
02- ПГС-33358 |
лист | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Проверил |
10 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Выполнил |
Кучер Ю.Р. |
02- ПГС-33358 |
лист | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Проверил |
11 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Выполнил |
Кучер Ю.Р. |
02- ПГС-33358 |
лист | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Проверил |
12 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Информация о работе Контрольная работа по "Строительная механика"