Выборка. Выборочный метод

Автор работы: Пользователь скрыл имя, 25 Февраля 2014 в 20:46, курсовая работа

Краткое описание

Цель курсовой работы выяснить, какую роль выборка играет в социологическом исследовании, и какие бывают типы выборок.
Степень изученности проблемы в современной научной литературе представлены отдельные аспекты проблемы, имеющие значение для нашего исследования. Учитывая специфику изучаемого явления, вытекающую из особенностей российского общества и состояния системы общественного производства на современном этапе развития, мы обращались к трудам отечественных ученых.

Содержание

ВВЕДЕНИЕ……………………………………………………………….………....
I ВЫБОРКА. ВЫБОРОЧНЫЙ МЕТОД……………………….………………..
II ТИПЫ ВЫБОРОК…………………………………………………………….....
2.1. Вероятностная выборка ………………………………...………………………
2.2. Не вероятностная выборка ………………..………………..…..........................
2.3. Многоступенчатая и одноступенчатая……………………………………...…
III КАЧЕСТВО, РАЗМЕР И ОШИБКА ВЫБОРКИ…………………..........….
ЗАКЛЮЧЕНИЕ…………………………………………….…….…………............
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ И ЛИТЕРАТУРЫ……..

Прикрепленные файлы: 1 файл

CМК ТИПЫ ВЫБОРКИ.doc

— 226.00 Кб (Скачать документ)

Кроме того, выборочный метод имеет широкую область применения. Широта области применения выборочного метода объясняется тем, что небольшой (по сравнению с генеральной совокупностью) объем выборки позволяет использовать более сложные методы обследования, включая использование различных технических средств (например, видео- и аудиоаппаратуры).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

II ТИПЫ ВЫБОРОК

 

На сегодняшний день существует огромное количество классификаций типов выборки, различные исследователи по-разному классифицируют свои и чужие способы формирования выборочной совокупности. В разных изданиях можно столкнуться с различными названиями одной и той же выборки11, что затрудняет процесс их изучения. Рассмотрим одну из этих классификаций, объединяющую в себе все те, которые встречаются в используемой литературе.

 

2.1.Случайная выборка.

Случайная выборка является наиболее точной, репрезентативность (способность выборки «правильно отражать состояние дел в генеральной совокупности, из которой она извлечена и для изучения которой предназначена»12) её достигается при помощи математических методов. Особенность случайной выборки заключается в том, что все единицы генеральной совокупности имеют равную вероятность попасть в выборочную совокупность.13 По определению, при случайной выборке выполняется принцип случайности. «Равенство шансов попасть в выборочную совокупность – насколько необходимое, настолько же и сложно осуществимое требование. Для обеспечения этой «статистической демократии» равенства шансов социолог, как правило, формирует основу выборки»14, то есть полный и точный перечень или пронумерованный список всех элементов генеральной совокупности. Например, основой выборки  могут выступать списки работников предприятия, телефонные справочники, регистрационные списки владельцев автомобилей,  списки избирателей на избирательных участках, домовые книги, а так же составленные самим социологом различные списки в зависимости от целей исследования (список улиц, на которых потом проводится отбор респондентов).

Случайная выборка обычно применяется при опросах общественного мнения перед выборами, референдумами и другими массовыми мероприятиями15.

Плюсом данного метода является полное соблюдения принципа случайности и, как следствие – избежание систематических ошибок.

Случайная выборка обладает рядом недостатков, которые затрудняют ее применение на практике:

  1. Необходимость наличия списка элементов генеральной совокупности. Трудность здесь заключается в том, что получить такой список далеко не всегда представляется возможным. Следовательно, в тех случаях, когда невозможно получить список элементов генеральной совокупности, невозможно проводить и случайный отбор.
  2. Сложность проведения опроса. Процедура опроса при случайном отборе является очень громоздкой и требующей много времени. Ведь в результате случайного отбора исследователь получает на выходе список фамилий респондентов (телефонов, адресов и т.д.), которых необходимо опросить. То есть, интервьюерам приходится «бегать» за каждым респондентом и добиваться от него согласия ответить на «парочку вопросов».

Усложняет эту задачу и то, что респондентов порой бывает не так просто найти; в случае отсутствия респондента его приходится посещать по нескольку раз (по крайней мере, не менее трех раз).

Все вышеперечисленное ведет к повышенным временным затратам на проведение опроса. Временные затраты можно уменьшить только благодаря привлечению дополнительных интервьюеров, т.е. только за счет дополнительных денежных расходов. Кроме этого возникает еще так называемая проблема неответивших.

  1. Сравнительно большой объем выборки. Для получения результатов со сравнительно высокой степенью точности случайный отбор требует достаточно большого объема выборки по сравнению с другими видами отбора. Другими словами, случайный отбор обладает меньшей степенью точности, что, в конечном счете, является причиной его меньшей эффективности. А выборка считается более эффективной, если: при одинаковых расходах она более точна, а при одинаковой точности она более дешевая.

«Простой случайный отбор из генеральной совокупности предполагает что:

– генеральная совокупность однородна;

– все её элементы доступны для исследования в одинаковой степени;

– имеется полный список элементов, составляющих генеральную совокупность (или хотя бы репрезентативная основа выборки);

– к этому списку применяются процедуры случайного отбора, с использованием таблиц или компьютерных генераторов случайных чисел»16.

1) Метод жребия (или лотерейный метод).

Каждый элемент (респондент) генеральной совокупности заносится на карточку (это могут быть фамилии, адреса, просто номера (в этом случае номера ставят в соответствие с людьми в списках) и т.д.), затем бумажки помещаются в урну или барабан, перемешиваются и, не глядя, вынимаются. Номера на выбранных карточках указывают на элементы генеральной совокупности, которые попадают в выборочную совокупность. После доставания каждой карточки, оставшиеся снова перемешиваются.

– простой случайно-повторный отбор – отбор, при котором выбранная карточка возвращаются обратно в урну, и затем отбор продолжается;

– простой случайно-безповторный отбор – отбор, при котором выбранная карточка откладываются в сторону и отбор продолжается.

Отбор заканчивается, когда будет выбрано заранее заданное количество элементов выборочной совокупности17.

Осуществление этого метода довольно трудоёмкая и продолжительная операция (особенно при больших объемах выборки), а для обеспечения равного шанса выбора каждого элемента генеральной совокупности, требуется тщательное перемешивание карточек после каждой выемки очередного номера18.

2) Метод таблиц случайных чисел.

Для осуществления этого метода используют таблицы случайных чисел, которые «можно найти в справочниках по математической статистике. Отбор номеров из таблицы случайных чисел формирует выборочную совокупность. Таблицы устроены таким образом, что отбор можно осуществлять с начала, с конца, из середины, по горизонтали, по вертикали, поскольку числа от 0 до 9 имеют равную вероятность появиться в любой позиции таблицы»19. Сначала мы присваиваем элементам (респондентам) генеральной совокупности номера. Например, номера от 01 до 70 (если число элементов генеральной совокупности равно 70), но если бы максимальный номер в списке (количество элементов генеральной совокупности) был трёхзначным (например, 456), мы бы присваивали им трёхзначные номера, используя нули в отсутствующих разрядах (например, 067 или 005). Затем задаёмся произвольными номерами строки и столбца, цифра, находящаяся на их пересечение и будет номером первого респондента, а далее отбор можно проводить по любому правилу: подряд, через строку через два столбца и такое прочее. Выбирается количество чисел равное количеству элементов выборочной совокупности.

Если в процессе отбора попадаются числа, превосходящие по величине самый большой номер в списке или повторяющиеся, то их положено пропускать.

Так же если нужны, например, трёхзначные числа, а таблица состоит из пятизначных чисел, то используют, как правило, только первые три цифры каждого пятизначного числа, а оставшиеся две игнорируют20.

Кроме таблиц случайных чисел в этом методе нередко используется генератор случайных чисел. Это то же самое, что и таблицы случайных чисел, только числа вырабатываются компьютером (для этого существует специальная программа).

Метод систематической (или механической) выборки заключается в том, что из основы выборки, которая представляет собой полный пронумерованный список элементов генеральной совокупности, через равные интервалы (шаги), например каждый второй, третий или десятый, осуществляется отбор заданного числа респондентов.

Интервал (k) рассчитывается по формуле:

k = N/n;

где  N - полное число элементов генеральной совокупности, а n – число элементов выборочной совокупности.

Первый респондент непременно отбирается случайным образом, по таблице случайных чисел.

Этот метод может привести к систематической ошибке, если список ранжирован по какому-либо признаку, так как тогда само определение места начала случайного отбора будет влиять на средние характеристики всей выборки.

Когда генеральная совокупность слишком велика или исследователю известен не полный её список, необходимо знать правило упорядочивания элементов в генеральной совокупности21, так как интервал отбора может совпасть со скрытой периодичностью распределения признака в генеральной совокупности, а это приведет в свою очередь к смещениям22.

Метод систематической выборки позволяет даже при не большом объёме выборки изучить достаточно большие генеральные совокупности с помощью простой техники отбора.

При серийной (гнездовая или кластерная) выборке единицами отбора выступают не сами индивиды, а группы (кластеры или гнёзда). Обычно генеральную совокупность расчленяют на естественные гнезда, так как «при формировании искусственных гнезд создаётся трудность отнесения каждого отдельного элемента генеральной совокупности только к одному гнезду и обеспечения приблизительно одинаковых размеров гнезд»23 по определённому признаку. В качестве кластеров выступают семьи, бригады, классы, студенческие группы, школы - при изучении школьников, и больницы - при изучении пациентов, а так же районы, города и такое прочее.24

Применение кластерной процедуры основано на четырёх обязательных условиях:

  1. каждый элемент генеральной совокупности может принадлежать только к одному кластеру;
  2. должно быть известно или поддаваться оценке с приемлемой степенью точности число элементов генеральной совокупности каждого кластера;
  3. кластеры должны быть не разбросаны пространственно и не слишком велики, иначе кластерная выборка теряет свои преимущества в финансовом смысле;
  4. выбор кластеров должен быть осуществлен так, что бы рост выборочной ошибки был минимальным (разные кластеры не должны быть однородными по исследуемому признаку и слишком большими)25.

После отбора кластеров они, как правило, подвергаются сплошному исследованию, но при необходимости осуществляют выборку из гнезда.

«Число респондентов, отбираемых из серии, пропорционально общему числу элементов в ней. Из каждой (серии) можно осуществить отбор единиц анализа при помощи собственно-случайной или механической выборки. Количество респондентов, подлежащих отбору из каждой серии в отдельности, определяется из соотношения:

ni =Ni * n / N,

где i – число серий, выделенных в генеральной совокупности, Ni – число единиц в серии»26.

Достоинствами гнездового отбора можно назвать - организационную простоту и удобство опроса респондентов, которые находятся вместе, а не разбросаны пространственно, а так же то, что респонденты изучаются в их естественном окружении, а это, конечно, влияет на качество получаемой первичной информации. Иногда гнёзда подвергаются сплошному исследованию, а это гораздо проще, чем бегать за каждым респондентом, и при этом  мы получаем выигрыш и в средствах, и во времени.

Но при этом необходимо следить, чтобы количество групп в генеральной совокупности было достаточно большим, иначе ни о каком принципе случайности не может быть и речи. Кроме того, возможны неточности из-за того, что на момент опроса не удается застать всех членов группы27.

Стратифицированная выборка применяется в тех случаях, «когда цели и задачи исследования требуют вероятностного отбора респондентов по каким-либо групповым критериям»28, или когда мы имеем дело с неоднородной генеральной совокупностью, или когда она слишком велика, или имеет сложную структуру, и основу выборки для всей генеральной совокупности получить сложно, чем для отдельных её частей. Для повышения точности результатов отбора процедура такой выборки состоит из деления генеральной совокупности на страты («страта» – это социальная, возрастная, или иная группа, буквально «слой»29), которые являются однородными и используются для изучения электоральных намерений, социального класса и возраста, отношений к уровню доходов и другое. После определения страт в каждой из них осуществляется простая случайная или систематическая выборка, при наличии собственной основы выборки.30

Выделяют три способа размещения выборки (для того чтобы выборка не теряла свой случайный характер):

  1. Пропорциональное размещение выборки: из каждой страты отбирается определённый процент (5-10%) единиц отбора, «объем выборки из страты пропорционален размеру страты в генеральной совокупности»31. Этот способ очень простой и надёжный.
  2. Равномерное размещение выборки: из каждой страты отбирается одинаковое число единиц (например, по 200-300). Применяется в случаях, когда исследователю неизвестны объемы страт исходной совокупности.
  3. Оптимальное размещение выборки: считается, что самые неоднородные страты должны быть представлены в выборке наибольшим объёмом единиц, а однородные – наименьшим. Этот же способ используется очень редко, так как на практике он трудно реализуется из-за отсутствия информации о вариации признаков в генеральной совокупности32. 

Когда стратифицированную выборку называют районированной, значит стратификация проходит по территориальному принципу. Например, при опросах часто применяют районирование по областям.

Этот метод особенно хорош, когда генеральная совокупность неоднородна. Однако стратифицированная выборка может быть применена лишь при наличии дополнительной информации о генеральной совокупности (например, нам необходимо процентное соотношение мужчин и женщин, в случае, если мы хотим стратифицировать выборку по полу). Отсутствие такой информации делает применение стратифицированной выборки невозможным. Еще один недостаток стратифицированного отбора – это возможность систематической ошибки33.

Информация о работе Выборка. Выборочный метод