Автор работы: Пользователь скрыл имя, 30 Декабря 2010 в 13:03, шпаргалка
48 кратких ответов.
1-b = P(H1/H1)
37.
Проверка гипотезы о равенстве
генеральных средних при
Пусть по выборкам x1, x2, ... , xn объема n, h1, h2, ... , hm объема m, получены выборочные средние значения ( ; ). Выдвигается гипотеза о равенстве генеральных средних: H0: M(x) = M(h); При конкурирующей гипотезе:
H1: M(x) ¹ M(h); В качестве проверки
гипотезы выбираем новую СВ
;
- СВ:
Д(Z)- дисперсия Д(( - )/s( - )) =
M(Z) = 0; Д(Z) = 1. Для того, чтобы выбрать Zкр. и при заданном уровне значимости a, определить принимается или не принимается основная гипотеза, найти вероятности.
P(0 < Z < Zкр.) + P(Z > Zкр. прав.) = ½ Ф(Zкр.) + a/2 = ½ Ф(Zкр. прав.) = ½ - a/2
Zнабл. =
|Zнабл.| < Zкр.прав. Þ Н0 |Zнабл.| > Zкр.прав. Þ Н0 отвергается.
38.
Проверка гипотезы о равенстве
генеральных средних при
Пусть x и h нормально распределенные СВ, предполагается, что неизвестны, но равны между собой дисперсии. x1, x2, ... , xn h1, h2, ... , hm
; : Н0: М(x) = М(h) Н1: М(x) ¹ М(h)
Для проверки гипотезы Н0, вводится СВ t, которая представляет собой
Теоретическое обозначение признака; СВ Т распределена по закону Стъюдента, зависит от первого параметра, который называется числом степеней свободы (k).
k = n + m – 2 (по
таблице для распределения
Ткр. прав. = - Ткр. лев. | Тнабл. | < Ткр. двуст. Þ Н0 | Тнабл. | > Ткр. двуст. Þ Н0 отвергается.
42. Марковские случайные процессы. Размеченный граф состояний.
Предположим, что дана система S. Предп., что состояние этой сис-мы хар-ся параметрами состояний. Если состояние системы меняется во времени случайно, то говорят, что в сис-ме протекает случайный процесс. Сис-ма —аудитория. Для хар-ки состояния используется параметр—число студентов, тогда эта система с дискретными состояниями. Будем рассматривать системы с дискретными состояниями и непрерывным t: сис-ма мгновенно в произвольные сегменты t скачками меняет состояние. Если параметр t принимает дискретные значения (t=1,2,3,...), то происходит процесс с дискретным временем (случайная последовательность), если же t изменяется на некотором интервале, то процесс с непрерывным временем. Если случайные величины семейства принимают дискретные значения, то имеет место процесс с дискретными значениями, если же непрерывное, то с непрерывными значениями. Предположим, что рассматривается система с дискретными состояниями и непрерывным t. Пусть S1, S2,...,Sn —возможные состояния сис-мы. Для описания процесса, происх. в сис-ме, надо знать вер-ти каждого состояния на произвольный момент t. Р1(t)—вер-ть того, что в момент t сис-ма находится в 1-ом состоянии. Процесс, протекающий в системе, наз. марковским, если для него вероятность попасть в состояние Xi=Si в момент ti зависит не от всего прошлого, а лишь от состояния Xi-1=Si, в котором процесс был в предыдущий момент времени ti-1. Графом называется совокупность вершин и дуг, соединяющих эти вершины. Для описания процесса, протекающего в системе, удобно использовать размеченный граф состояний, в котором в кач-ве вершин исп-ся различные состояния системы, а в кач-ве дуг—стрелки, показ. возможные переходы за 1 шаг из состояния в состояние. При этом над каждой стрелкой указ. Плотность вероятности соответствующего перехода.
43. Система дифф. уравнений Колмогорова для вероятностей состояний.
Пусть дан марковский случайный процесс. Рi(t)—вер-ти состояний: i=1,n(все с чертой), тогда для Рi(t) выполняется следующее дифференциальное уравнение
d Рi(t)/dt=å( от i<>k,k=1 до n) lki* Рi(t)—å( от j<>1,j=i до n) lij*Pi(t); i=1,n(все с чертой) (1) Система из n уравнений , т.к. для любого момента t å( от i=1 до n) Pi(t), то в системе (1) одно любое уравнение м-но отбросить. И, задав начальное условие на момент t=t0, P1(t0)=1, Pi(t0)=0, i=1,n( все с чертой).
В итоге
м-но решить сис-му дифф. ур-ний и найти
все вер-ти состояний Pi(t), i=1,n(все с чертой).
44.
Предельные вероятности
Предположим, что дан марковский случайный процесс, тогда, используя уравнение Колмогорова, можно найти Рi(t); i =
Предельными или финальными вероятностями называют пределы
, если эти вероятности
Если эти предельные вероятности существуют, то в системе устанавливается стационарный режим, при котором состояние системы меняется случайным образом, но вероятность каждого состояния остается неизменной.
Предельная вероятность в марковском случайном процессе существует, если этот процесс удовлетворяет свойству транзитивности. Процесс в протекающей системе называется транзитивным, если существует интервал времени t, в течение которого система может перейти из любого состояния Si в любое другое состояние Sj.
Алгебраические уравнения для предельной вероятности состояний
Пусть марковский
случайный процесс
, Þ, в этом случае вместо дифференциального уравнения Колмогорова получили систему линейных уравнений относительно вероятности состояний
Одно уравнение
отбрасывается, остается n уравнений, решая
эту систему получаем Р1, Р2, ... , Рn.
45.
Процессы гибели и размножения.
Мы предполагаем, что все потоки, переводящие систему из любого Si в Si+1 и из Si в Si-1 являются простейшими.
li, i+1
li, i-1
Процессы такого типа называются процессами гибели и размножения.
Составим систему уравнений для нахождения предельной вероятности состояний:
S0: l01P0 = l10P1 S1: l10P1 + l12P1 = l01P0 + l21P2 S2: l21P2 + l23P2 = l12P1 + l32P3 ... Sn: ln, n-1 Pn = ln-1, n Pn-1 P0 + P1 + P2 + ... + Pn = 1
Из первого уравнения выражаем P1 =
l01P0 + l12P1 = l01P0 + l21P2
P2 =
P3 = Pn = ...
P0 + ... + = 1
46. Потоки событий. Простейший поток и его свойства.
Потоком
событий называется
последовательность
каких-то однородных
событий, следующих
друг за другом через
случайные интервалы
времени, т.е. в произвольные
моменты времени.
Потоки избираются на числовой оси, представляющей ось времени, точками, соответствующими моменту наступления событий.
Например: - поток вызовов, поступающих на станцию скорой помощи;
- поток автомобилей, пересекающих перекресток.
Среднее число событий, происходящих в единицу времени называется интенсивностью потока. l - среднее число событий в потоке, происходящее за единицу времени. Свойства потока:
t2 – t1 = a
Вероятность появления того или иного числа событий в интервале t2 не зависит от того, какое число событий произошло в интервале t1.
Иначе, отсутствие последствия означает независимость наступления событий во времени.
3. Поток называется ординарным, если вероятность наступления двух и более событий за некоторый достаточно малый интервал времени t пренебрежимо мала по сравнению с вероятностью наступления одного события за этот интервал.
Поток, обладающий всеми тремя перечисленными свойствами называется простейшим.
47.
Закон распределения числа
Пусть рассматривается какой-то поток событий. С ним всегда можно связать дискретную СВ – число событий, происходящих за интервал длины t. Эта СВ дискретна. С этим же потоком можно связать НСВ – интервал времени между событиями. Т – интервал времени между событиями в потоке. Для простейшего потока доказано, что число событий, попадающих на интервал длины t является ДСВ, распределенной по закону Пуассона. Вероятность того, что за время t произойдет ровно k событий.