Параллельный колебательный контур

Автор работы: Пользователь скрыл имя, 05 Ноября 2015 в 19:33, реферат

Краткое описание

В различных радиотехнических устройствах наряду с последовательными колебательными контурами часто (даже чаще, чем последовательные) применяют параллельные колебательные контуры На рисунке приведена принципиальная схема параллельного колебательного контура. Здесь параллельно включены два реактивных элемента с разным характером реактивности Как известно, при параллельном включении элементов складывать их сопротивления нельзя - можно лишь складывать проводимости.
Рассмотрим, как зависят коэффициенты передачи четырехполюсников от частоты, при включении в них не последовательных колебательных контуров, а параллельных.

Содержание

Введение……………………..………………………..…………..………….1
Основные параметры колебательного контура……………………..……..4
Возможные режимы установившихся гармонических колебаний в параллельном колебательном контуре………………………………......…6
Резонанс токов……………………………………………………………….8
Комплексные передаточные функции параллельного контура……..…..10
Заключение……………………………………………………………….....14
Литература, используемая для подготовки к лекции………….…...........15

Прикрепленные файлы: 1 файл

тэц.docx

— 404.03 Кб (Скачать документ)

                               СОДЕРЖАНИЕ Введение……………………..………………………..…………..………….1

Основные параметры колебательного контура……………………..……..4

Возможные режимы установившихся гармонических колебаний в параллельном колебательном контуре………………………………......…6

Резонанс токов……………………………………………………………….8

Комплексные передаточные функции параллельного контура……..…..10

Заключение……………………………………………………………….....14

Литература, используемая для подготовки к лекции………….…...........15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение

Параллельный колебательный контур

 

В различных радиотехнических устройствах наряду с последовательными колебательными контурами часто (даже чаще, чем последовательные) применяют параллельные колебательные контуры На рисунке приведена принципиальная схема параллельного колебательного контура. Здесь параллельно включены два реактивных элемента с разным характером реактивности Как известно, при параллельном включении элементов складывать их сопротивления нельзя - можно лишь складывать проводимости. На рисунке приведены графические зависимости реактивных проводимостей катушки индуктивности BL = 1/ωL, конденсатора ВC = -ωC, а также суммарной проводимости ВΣ, этих двух элементов, являющаяся реактивной проводимостью параллельного колебательного контура. Аналогично, как и для последовательного колебательного контура, имеется некоторая частота, называемая резонансной, на которой реактивные сопротивления (а значит и проводимости) катушки и конденсатора одинаковы. На этой частоте суммарная проводимость параллельного колебательного контура без потерь обращается в нуль. Это значит, что на этой частоте колебательный контур обладает бесконечно большим сопротивлением переменному току.

Если построить зависимость реактивного сопротивления контура от частоты XΣ = 1/BΣ, эта кривая, изображённая на следующем рисунке, в точке ω = ωр будет иметь разрыв второго рода. Сопротивление реального параллельного колебательного контура (т.е с потерями), разумеется, не равно бесконечности - оно тем меньше, чем больше омическое сопротивление потерь в контуре, т.е уменьшается прямо пропорционально уменьшению добротности контура. В целом, физический смысл понятий добротности, характеристического сопротивления и резонансной частоты колебательного контура, а также их расчетные формулы, справедливы как для последовательного, так и для параллельного колебательного контура. 

 

 Для параллельного колебательного контура, в котором индуктивность, емкость и сопротивление включены параллельно, добротность вычисляется:

где R, L и C — сопротивление, индуктивность и ёмкость резонансной цепи, соответственно.

 

 Рассмотрим цепь, состоящую из генератора гармонических колебаний и параллельного колебательного контура. В случае, когда частота колебаний генератора совпадает с резонансной частотой контура его индуктивная и емкостная ветви оказывают равное сопротивление переменному току, в следствие чего токи в ветвях контура будут одинаковыми. В этом случае говорят, что в цепи имеет место резонанс токов. Как и в случае последовательного колебательного контура, реактивности катушки и конденсатора компенсируют друг друга, и сопротивление контура протекающему через него току становится чисто активным (резистивным). Величина этого сопротивления, часто называемого в технике эквивалентным, определяется произведением добротности контура на его характеристическое сопротивление Rэкв = Q·ρ. На частотах, отличных от резонансной, сопротивление контура уменьшается и приобретает реактивный характер на более низких частотах - индуктивный (поскольку реактивное сопротивление индуктивности падает при уменьшении частоты), а на более высоких - наоборот, емкостной (т к реактивное сопротивление емкости падает с ростом частоты).

 В процессе работы контура, дважды за период колебаний, происходит энергетический обмен между катушкой и конденсатором (смотри рисунок). Энергия поочередно накапливается, то в виде энергии электрического поля заряженного конденсатора, то в виде энергии магнитного поля катушки индуктивности. При этом в контуре протекает собственный контурный ток Iк, превосходящий по величине ток во внешней цепи I вQ раз. В случае идеального контура (без потерь), добротность которого теоретически бесконечна, величина контурного тока также будет бесконечно большой. Но на практике, такого не бывает. В любом случае, качество элементов контура, их паразитные характеристики, электрические цепи, служащие для подвода энергии и отбора энергии из контура, не позволят контурному току расти.

Рассмотрим, как зависят коэффициенты передачи четырехполюсников от частоты, при включении в них не последовательных колебательных контуров, а параллельных.

Четырехполюсник, изображенный на рисунке, на резонансной частоте контура представляет собой огромное сопротивление току, поэтому при ω=ωр его коэффициент передачи будет близок к нулю (с учетом омических потерь). На частотах, отличных от резонансной, сопротивление контура будет уменьшатся, а коэффициент передачи четырехполюсника - возрастать.

Для четырехполюсника, приведенного на рисунке выше, ситуация будет противоположной - на резонансной частоте контур будет представлять собой очень большое сопротивление и практически все входное напряжение поступит на выходные клеммы (т.е коэффициент передачи будет максимален и близок к единице). При значительном отличии частоты входного воздействия от резонансной частоты контура, источник сигнала, подключаемый к входным клеммам четырехполюсника, окажется практически закороченном накоротко, а коэффициент передачи будет близок к нулю.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Основные параметры колебательного контура

 Пусть конденсатор  С, заряженный от внешнего источника, подключается к индуктивности L (рис. 1а)

 
 


 

 Разряд конденсатора  не может произойти мгновенно, т.к. этому препятствует ЭДС самоиндукции, возникающая в элементе индуктивности.

В идеальном контуре, активное сопротивление которого равно нулю, и, следовательно, отсутствуют потери, запасенная в электрическом поле энергия полностью переходит в энергию магнитного поля индуктивности.

Затем происходит обратный переход энергии. Далее процессы повторяются. Таким образом, возникают незатухающие электрические колебания, имеющие форму косинусоиды. Графики  и  представлены на рисунке 1, б.

Частота, с которой происходит колебания энергии между реактивными элементами при отключении источника, называется частотой свободных (собственных) незатухающих колебаний контура. Обозначение:  или  .

Т.к. в идеальном контуре величины напряжений на L и C одинаковы, то

,  , Запчасти каталог запчастей Porsche.

или  ,  .

В режиме свободных колебаний через элементы контура протекает ток. Сопротивление, которое оказывают элементы контура току на частоте собственных колебаний, называется волновым (характеристическим).

Это сопротивление обозначается  и определяется следующим образом:

, или  . Т.к.  , то

(Ом).

Из последнего выражения следует, что на частоте собственных колебаний волновое сопротивление равно одному из реактивных сопротивлений (рис. 2).

Рис. 2

На практике реальный КК всегда имеет потери активное сопротивление не равно 0, что приводит к затухающему характеру свободных колебаний (рис. 3).

 Рис. 3

Для характеристики последнего свойства вводится понятие добротность контура (качество контура).

Добротность  является энергетическим параметром и показывает во сколько раз реактивная мощность (за счет которой и происходят свободные колебания) больше активной:

Отметим, что данное определение относится не только к колебательным контурам, но и к отдельным деталям, например, к катушкам индуктивности, к конденсаторам.

Чем больше реактивная мощность, тем выше добротность и тем медленнее происходит затухание колебаний и наоборот.

Добротность КК, применяемых в технике связи, обычно составляет десятки-сотни, а в технике СВЧ и специальных устройствах добротность может достигать тысячи и больше.

Принято считать, что если:  – KK низкой добротности,

– КК средней добротности,

– КК высокой добротности.

Практически реализовать LC контур с добротностью свыше 400 трудно из-за низкой добротности катушек индуктивности (именно они и определяют качество контура).

Вывод: Рассмотренные параметры  ,  и  для колебательных контуров являются одним из основных, т.к. они зависят от первичных параметров, и их называют вторичными параметрами контура.

Рис. 4

2. Возможные режимы установившихся гармонических колебаний в параллельном колебательном контуре.

Параллельным колебательным контуром называют цепь, составленную из элементов индуктивности, емкости и сопротивления, соединенных параллельно. Схема контура показана на рисунке 4.

Найдем комплексную проводимость контура:

,

где:  – активная составляющая проводимости,

– реактивная составляющая проводимости.

Из формулы следует, что в зависимости от соотношения  и  в параллельном контуре возможны 3 режима:

  1. , т.е.  и  .

Построим для этого случая векторную диаграмму, положив начальную фазу напряжения на контуре, равной 0 (рис. 5)

Рис. 5

Как видно из векторной диаграммы, ток в контуре опережает напряжение на некоторый угол  , что является признаком емкостного режима.

Вывод: При  в параллельном контуре устанавливается емкостной режим колебаний и ток в контуре опережает напряжение.

2)  т.е.  и  .

Построив аналогичным образом векторную диаграмму (рис. 6), убедимся в том, что ток в контуре будет теперь отставать от напряжения  на некоторый угол  , что является признаком индуктивного режима.  

 

Гармонические колебания в параллельном контуре

Рис. 6

Вывод: При  в параллельном контуре устанавливается индуктивный режим колебаний, и ток в контуре отстает от напряжения.

3)  т.е.  и  .

Проводимость контура в этом случае равна активной проводимости G. Контур имеет активный характер, т.е. ток совпадает по фазе с напряжением на контуре и численно равен току через проводимость (рис. 7).

Рис. 7

Такой режим называется резонансом токов и имеет важное практическое значение.

Проведенный анализ показывает, что режим колебаний в параллельном контуре определяется соотношением реактивных проводимостей  и  .

Любой из рассмотренных режимов может быть получен несколькими способами: изменением частоты генератора, индуктивности и емкости.

Вывод: Значения режимов ГК в контуре позволяет качественно анализировать процессы, проходящие в контурах, произведя соответствующие инженерные расчёты.

3. Резонанс токов

1) Резонансная частота

Выше показано, что резонанс токов наступает на частоте, при которой:

откуда  .

Т.е. резонансная частота равна частоте собственных колебаний контура. Изменение  достигается изменением L или C (чаще).

2) Волновое сопротивление контура

На резонансной частоте,  откуда  (Ом), т.е.

волновое сопротивление контура равно сопротивлению одного из реактивных элементов.

Обычно волновое сопротивление ПК, используемых в электрических цепях, имеет порядок несколько сотен Ом (100 500).

3) Добротность контура

По определению  , где,  следовательно  .

Т.к. на резонансной частоте численные значения проводимостей  и  одинаковые, то добротность можно вычислить по следующей формуле:

, т.о.  .

4) Резонансное сопротивление контура, токи в ветвях при резонансе

т.к. при резонансе  , то  и  , т.е. сопротивление контура при резонансе чисто активно и наибольшее по величине.

Действительно, полное сопротивление контура равно:

при  ,  и  .

Определим соотношение между током источника и током через реактивный элемент:

, т.е.  .

Аналогично можно показать, что .

Вывод: При резонансе токи в ветвях параллельного КК максимальны и в Q раз больше тока источника. Этим и объясняется название режима – резонанс токов.

При резонансной частоте задающий токисточника замыкается через элемент проводимости контура. Токи же в реактивных элементах контура взаимно компенсируют друг друга относительно внешней цепи контура, или, аналогично, что при резонансной частоте круговой ток замыкается через реактивные элементы контура. При этом  , а  наибольшее по величине. При резонансе напряжение на контуре максимально ( ). Именно по этому признаку параллельный КК настраивается на резонансную частоту.

4. Комплексные передаточные функции параллельного контура

Выражения для частотных характеристик параллельно колебательного контура относительно напряжения, можно получить из следующей комплексной передаточной функции:

.

Преобразуем знаменатель  :

т.о.  .

Здесь частотно-зависимым является множитель  называемый относительной расстройкой. Произведение  называют обобщенной расстройкой контура.

C учетом этого: .

Из выражения  получаем

АЧХ:  ,

и ФЧХ:  .

АЧХ называют резонансной характеристикой параллельно колебательного контура. Максимальное значение эта характеристика имеет при резонансной частоте ( ),  .

Резонансную характеристику контура принято нормировать относительно ее максимального значения.Нормированная резонансная характеристика: т.е. отношение амплитуду напряжения при заданной частоте к амплитуде напряжения при резонансе:

.

Нормированная резонансная характеристика есть не что иное, как АЧХ контура относительно тока в элементе активного сопротивления.

Информация о работе Параллельный колебательный контур