Автор работы: Пользователь скрыл имя, 22 Апреля 2013 в 16:38, контрольная работа
Продолжительные ионизирующие излучения вызывают в клетках живых организмов поражение нуклеопротеидов и других структур хромосом, что приводит к нарушению процессов деления ядер, впоследствии, вызывает мутации у представителей животного и растительного мира. Под действием ионизирующего излучения у растений возникает патологический процесс, который принято называть лучевой болезнью. Из растений наиболее чувствительными к ионизирующим излучениям являются виды с большими размерами клеточного ядра и малым числом хромосом. Главным симптомом проявления лучевой болезни у растений является задержка роста.
2. Доза излучения и ее мощность.
Доза ионизирующего излучения — 1) мера излучения, получаемого облучаемым объектом, — поглощенная доза ионизирующего излучения; 2) количественная характеристика поля излучения — экспозиционная доза и норма.
Поглощенная доза — средняя энергия ионизирующего излучения, выделенная в единице массы вещества облученного объема. Она зависит от вида интенсивности излучения, энергетического и качественного его состава, времени облучения, а также от состава вещества. Доза ионизирующего излучения тем больше, чем длительнее время излучения. Превращение дозы в единицу времени называется мощностью дозы, которая характеризует скорость накопления дозы ионизирующего излучения.
Зависимость, поглощенной дозы
от энергии излучения, его
В поле нейтронного излучения определяющим в формировании поглощенной дозы является ядерный состав вещества, а атомный номер элементов, входящих в состав биологической ткани, не имеет значения. Для мягких тканей живого организма поглощенная доза нейтронов определяется их взаимодействием главным образом с ядрами углерода, водорода, кислорода и азота. Поглощенная доза в живой ткани в поле нейтронного потока зависит от энергии нейтронов. Это связано с тем, что нейтроны различной энергии избирательно взаимодействуют с ядрами вещества. При этом могут возникать заряженные частицы, гамма-излучение, а также образовываться радиоактивные ядра, которые сами становятся источниками ионизирующего излучения. Поглощенная доза при облучении нейтронами формируется за счет энергии вторичных ионизирующих частиц различной природы, возникающих в результате взаимодействия нейтронов с веществом. У других видов ионизирующего излучения (потоков электронов, тяжелых ионов, высокоэнергетического тормозного излучения ускорителей и т.п.) — свои особенности взаимодействия с веществом, которые и определяют зависимость дозы от энергии излучения и состава вещества. Независимо от вида первичного излучения поглощенная доза ионизирующего излучения в конечном итоге сформируется за счет энергии заряженных частиц, возникающих в результате преобразования энергии первичного излучения в облучаемом объекте.
В качестве единицы поглощенной дозы излучения в СИ принят грей (Гр) в честь английского ученого Грея, известного своими трудами в области радиационной дозиметрии. 1 Гр равен поглощенной дозе ионизирующего излучения, при которой веществу массой в 1 кг передается энергия ионизирующего излучения, равная 1 Дж. В практике распространена также внесистемная единица поглощенной дозы —1 рад = 10-2 Дж/кг = 100 эрг/г = 10-2 Гр или 1 Гр = 100 рад. Мощность дозы излучения соответственно выражается в Гр/с, Гр/ч, рад/с и т.п.
Поглощение энергии излучения является первопричиной всех последующих процессов, которые при облучении живого объекта в конечном итоге приводят к тому или иному радиобиологическому эффекту. При данном виде излучения выход радиационно-индуцированных эффектов определенным образом связан с поглощенной энергией излучения, которая в ряде случаев выражается простой пропорциональной зависимостью. Это позволяет дозу излучения принимать в качестве количественной меры последствий облучения, в частности живого организма.
Разные виды ионизирующего
ОБЭ = Do/Dx
где Dx — доза данного вида излучения, для которого определяется ОБЭ; Do — доза образцового излучения.
На основе данных об ОБЭ
разные виды ионизирующего
Коэффициент
качества излучения является регламентированной
величиной ОБЭ, устанавливаемой
специальными нормативными органами.
Например, нормами радиационной безопасности
коэффициент качества рентгеновского
и гамма-излучения при
H = KD.
Эквивалентная доза
Единицей эквивалентной дозы в СИ является зиверт (Зв) — по имени шведского ученого Зиверта — первого председателя Международной комиссии по радиологической защите (МКРЗ). Если в последней формуле поглощенную дозу излучения (D) выразить в греях, то эквивалентная доза будет выражена в зивертах. 1 Зв равен эквивалентной дозе, при которой произведение поглощенной дозы (D) в живой ткани стандартного состава и среднего коэффициента качества (К) равно 1 Дж/кг.
В практике распространена
Если в той же формуле
Значения взвешивающих
Эффективная эквивалентная
НЕ = НТ.
Эффективная эквивалентная
Экспозиционную дозу
Зная экспозиционную дозу, можно рассчитать поглощенную дозу и ее распределение в любом сложном объекте, помещенном в данное радиационное поле, в частности в теле человека. Это позволяет планировать и контролировать заданный режим облучения.
Специфической дозиметрической
величиной, характеризующей
Рассмотренные разновидности Д.
Дозы ионизирующего излучения делятся.
Экспозиционная доза определяет ионизирующую способность рентгеновских и гамма-лучей и выражает энергию излучения, преобразованную в кинетическую энергию заряженных частиц в единице массы атмосферного воздуха. В системе СИ единицей измерения экспозиционной дозы является кулон, деленный на килограмм (Кл/кг). Внесистемная единица — рентген (Р), 1 Кл/кг = 3880 Рентген.
Поглощенная доза показывает, какое количество энергии излучения поглощено в единице массы любого облучаемого вещества и определяется отношением поглощенной энергии ионизирующего излучения на массу вещества. За единицу измерения поглощенной дозы в системе СИ принят грэй (Гр). 1 Гр — это такая доза, при которой массе 1 кг передается энергия ионизирующего излучения 1 Дж. Внесистемной единицей поглощенной дозы является рад. 1 Гр = 100 рад.
Эквивалентная доза отражает биологический эффект облучения. Это поглощённая доза в органе или ткани, умноженная на коэффициент качества данного вида излучения, отражающий его способность повреждать ткани организма. В единицах системы СИ эквивалентная доза измеряется в джоулях, деленных на килограмм (Дж/кг), и имеет специальное название — зиверт (Зв). Использовавшаяся ранее внесистемная единица — бэр (1 бэр = 0,01 Зв).
Эффективная доза — величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов и тканей, с учетом их радиочувствительности. Она представляет сумму произведений эквивалентной дозы в органах и тканей на соответствующие взвешивающие коэффициенты.
3.Радиоиммунологический метод анализа его применение в зоотехнии.
Радиоиммунный анализ — метод количественного определения биологически активных веществ (гормонов, ферментов, лекарственных препаратов и др.) в биологических жидкостях, основанный на конкурентном связывании искомых стабильных и аналогичных им меченных радионуклидом веществ со специфическими связывающими системами. Последними чаще всего являются специфические антитела. В связи с тем, что меченый антиген добавляют в определенном количестве, можно определить часть вещества, которая связалась с антителами, и часть, оставшуюся несвязанной в результате конкуренции с выявляемым немеченым антигеном. Исследование выполняют in vitro. Для Р. а. выпускают стандартные наборы реагентов, каждый из которых предназначен для определения концентрации какого-либо одного вещества. Исследование проводят в несколько этапов: смешивают биологический материал с реагентами, инкубируют смесь в течение нескольких часов, разделяют свободное и связанное радиоактивное вещество, осуществляют радиометрию проб, рассчитывают результаты. Метод отличается высокой чувствительностью, его можно использовать в диагностике заболеваний сердечнососудистой, эндокринный и других систем, для установления причин бесплодия, нарушения развития плода, в онкологии для определения маркеров опухолей и контроля за эффективностью лечения, для определения концентрации в крови иммуноглобулинов, ферментов и лекарственных веществ. В ряде случаев исследования выполняют на фоне нагрузочных функциональных проб (например, определение содержания инсулина в сыворотке крови на фоне пробы на толерантность к глюкозе) либо в динамике (например, определение в крови половых гормонов на протяжении менструального цикла).
Использование радионуклидов и ионизирующих излучений в животноводстве и ветеринарии
Применение современных достижений ядерной физики в животноводстве и ветеринарии, а также в других отраслях сельского хозяйства развивается в следующих основных направлениях:
. радионуклиды применяются как индикаторы (меченые атомы) в исследовательских работах в области физиологии и биохимии животных и растений, а также в разработке методов диагностики и лечение заболевших животных;
. радионуклиды и ионизирующие излучения используются в селекционно- генетических исследованиях в области растениеводства, животноводства, микробиологии и вирусологии;
. непосредственное применение ионизирующих излучений как процесса радиационно-биологической технологии для:
Информация о работе Действие ионизирующих излучений на растения