Биологические факторы плодородия почвы

Автор работы: Пользователь скрыл имя, 11 Ноября 2014 в 21:27, реферат

Краткое описание

Во-первых, они удобряют почву ежегодно после уборки урожая, в то время как все остальные виды органических удобрений вносят в почву периодически. Во-вторых, не требуется дополнительных затрат на их внесение. В-третьих, растительные остатки распределяются в почве наиболее равномерно. В них содержатся все макро- и микроэлементы, необходимые растениям и животным.

Содержание

БИОЛОГИЧЕСКИЕ ФАКТОРЫ ПЛОДОРОДИЯ ПОЧВЫ 3
ПОЧВЕННАЯ БИОТА 5
ФИТОСАНИТАРНОЕ СОСТОЯНИЕ ПОЧВЫ 6
АГРОФИЗИЧЕСКИЕ ФАКТОРЫ ПЛОДОРОДИЯ ПОЧВЫ 7
ГРАНУЛОМЕТРИЧЕСКИЙ СОСТАВ 7
СТРУКТУРА 8
МОЩНОСТЬ ПАХОТНОГО И ГУМУСОВОГО СЛОЕВ 9
ВОДНЫЙ РЕЖИМ 9
ВОЗДУШНЫЙ РЕЖИМ 10
ТЕМПЕРАТУРНЫЙ РЕЖИМ 11
АГРОХИМИЧЕСКИЕ ФАКТОРЫ ПЛОДОРОДИЯ 12
ВОСПРОИЗВОДСТВО ПЛОДОРОДИЯ ПОЧВ В ИНТЕНСИВНОМ ЗЕМЛЕДЕЛИИ 13

Прикрепленные файлы: 1 файл

zemledelie2.doc

— 118.00 Кб (Скачать документ)

Источник образования и поступления токсических веществ в почве — корневые выделения растений, послеуборочные растительные остатки и продукты метаболизма микроорганизмов. Наиболее интенсивно фитотоксические вещества накапливаются при возделывании на одном месте однородных или близких по биологии культур и при создании в почве анаэробных условий.

Когда в структуре посевных площадей преобладают культуры со сходными биологическими особенностями, как, например, зерновые, в почву ежегодно поступает приблизительно одинаковая по количеству и качеству органическая масса в виде корневых выделений и растительных остатков. Это приводит к изменению соотношения основных группировок микробиоценоза, появлению фитотоксических форм, которые поставляют в почву вредные для культурных растений вещества. Так, при разложении растительных остатков зерновых культур в почве обнаружено повышенное содержание фенольных соединений, которые, находясь в зоне семян растений, ингибируют их прорастание.

Анаэробные условия способствуют образованию токсических веществ, так как при этом корневые выделения и промежуточные продукты минерализации гумуса превращаются в сильно восстановленные соединения, что обусловливает создание очагов токсичности в почве. Можно полагать также, что в зоне корня некоторых растений избирательно накапливаются некоторые группы микроорганизмов, неблагоприятно действующих на растения.

Внесение минеральных и особенно органических удобрений приводит к уменьшению в почве численности фитотоксичных микроорганизмов. Но особенно сильное влияние на их содержание оказывает бессменное выращивание сельскохозяйственных растений — количество фитотоксичных форм микроорганизмов в почве значительно увеличивается.

Фитотоксины почвенных микроорганизмов вызывают изменения в химическом составе растений, нарушают обмен веществ в них. Они оказывают влияние на интенсивность дыхания а также на азотный обмен растений. Фитотоксины почвенных микроорганизмов значительно снижают фотосинтетическую активность растений.

Корни растений выделяют различные аминокислоты, углеводы и другие вещества. Вместе с экссудатами в почву поступает большинство веществ, участвующих в метаболизме клеток высших растений: сахара, гликозиды, органические кислоты, витамины, ферменты, алкалоиды и другие. Все эти вещества могут быть в той или иной мере использованы микроорганизмами в качестве источника питания.

Агрофизические факторы плодородия почвы

Гранулометрический состав

Развитая почва представляет собой смесь механических элементов трех видов: минеральные, органические и органоминеральные частицы. В минеральных почвах превалируют минеральные механические частицы разной формы и размера, разного химического и минералогического состава.

Дисперсность этого материала, химический и минералогический состав — фундаментальные свойства любой почвы, оказывающие многообразное воздействие на комплекс агрономических показателей почвы, ее плодородие. Относительное содержание в почве и породе механических элементов (фракций) называется гранулометрическим составом.

Механические частицы почвы больше 1 мм в диаметре называют скелетом почвы, частицы меньше 1 мм — мелкоземом. Мелкозем подразделяют на физический песок (частицы больше 0,01 мм) и физическую глину (частицы меньше 0,01 мм).

В зависимости от содержания физического песка и физической глины почвы могут быть песчаными, супесчаными, суглинистыми, глинами.

Гранулометрический состав почвы прежде всего определяет поглотительные (сорбционные) свойства почвы. Тонкодисперсные частицы в силу большой абсолютной и удельной поверхности обладают высокой емкостью поглощения. С измельчением частиц возрастают их гигроскопичность, влагоемкость, пластичность и другие технологические свойства. Частицы менее 0,001 мм обладают четко выраженной коагуляционной способностью. Эта способность механических тонкодисперсных частиц исключительно важна при структурообразовании. Они вследствие высокой поглотительной способности содержат наибольшее количество гумуса.

Плотность почвы уменьшается по мере увеличения в ее составе мелкозема. Валовой химический состав разных механических фракций почвы закономерно изменяется независимо от почвенного типа. Так, по мере увеличения дисперсности частиц в них резко уменьшается содержание кислорода и возрастает количество железа, алюминия, кальция, магния, калия и натрия. Частицы меньше 0,001 мм — наиболее ценная часть рыхлых пород и почв, поскольку в них содержатся основные запасы зольных питательных элементов. Пластичность почвы зависят от содержания в почве физической глины. Аналогично гранулометрический состав влияет и на твердость почвы. Высокая твердость почвы препятствует росту проростков и корней растений, а нередко является и причиной гибели растений. Твердые почвы оказывают большое сопротивление рабочим органам почвообрабатывающих машин.

Набухаемость почвы происходит за счет оболочек связанной воды, которые формируются вокруг коллоидных и глинистых частиц. Эти оболочки уменьшают силы сцепления между частицами, раздвигают их и способствуют увеличению объема почвы.

В основном величина и характер набухания почвы зависят от минералогического состава почвы, в частности от содержания вторичных минералов типа монтмориллонита, имеющих подвижную кристаллическую решетку.

Среди технологических свойств почв важную роль в создании физической спелости почвы имеет липкость: при излишней липкости увеличивается тяговое сопротивление почвообрабатывающих орудий и резко ухудшается качество обработки почвы. Как показали исследования В. В. Охотина, липкость почвы прямо пропорциональна содержанию физической глины.

Гранулометрический состав как фактор плодородия пахотных почв находит отражение в системах бонитировки почв. В большинстве случаев наиболее благоприятное сочетание агрофизических, биологических и агрохимических факторов плодородия отмечается в почвах среднего гранулометрического состава. Необходимо иметь в виду, что для разных почвенных типов, сильно различающихся по всему диапазону факторов плодородия, оценка гранулометрического состава как фактора плодородия может значительно различаться. Например, наиболее высокое плодородие черноземов соответствует, как правило, тяжелому гранулометрическому составу. Для дерново-подзолистых почв, сформировавшихся в зоне достаточного и избыточного увлажнения, наиболее благоприятен более легкий гранулометрический состав.

Структура

Структура почвы — важный показатель физического состояния плодородной почвы. Она определяет благоприятное строение пахотного слоя почвы, ее водные, физико-механические и технологические свойства и водно-гидрологические константы. Частицы твердой фазы почвы, как правило, склеиваются в комочки (агрегаты). Способность почвы распадаться на агрегаты различной величины называют структурностью. В почвоведении структура почвы — важный морфологический признак: по размеру агрегатов судят о генетических особенностях как всей почвы, так и ее отдельных горизонтов. По классификации С. А. Захарова, различают следующие типы структуры: глыбистую, комковатую, ореховатую, зернистую, столбчатую, призматическую, плитчатую, пластинчатую, листоватую, чешуйчатую.

Черноземы, например, в естественном состоянии характеризуются отчетливо выраженной зернистой структурой, серые лесные почвы — ореховатой. Хорошо окультуренные дерново-подзолистые почвы приобретают комковатую структуру, тогда как неокультуренные подзолы отличаются плитчатой и листоватой.

В земледелии принята следующая классификация структурных агрегатов: глыбистая структура — комки более 10 мм, макроструктура — от 0,25 до 10 мм, микроструктура — менее 0,25 мм. Благоприятные размеры макро- и микроагрегатов для пахотной почвы в большей мере условны. В более влажных условиях оптимальные размеры структурных агрегатов увеличиваются, а в засушливых — уменьшаются. Однако в условиях эрозионной опасности особое агрономическое значение и в засушливых районах приобретает увеличение размеров агрегатов до 1—2 мм в диаметре.

Образование структурных агрегатов в почве, по Н. А. Качинскому, происходит вследствие следующих процессов: взаимного осаждения (коагуляции) коллоидов, коагуляции коллоидов под влиянием электролитов. Эти процессы, однако, проявляются на фоне более общих физико-механических, физико-химических и биологических факторов структурообразования.

Большое значение имеет механическое разделение почвенной массы на комки (агрегаты), которое в природных условиях происходит под воздействием корневых систем растений, жизнедеятельности биоты почвы, под влиянием периодических промораживания — оттаивания, увлажнения и высушивания почвы, а в обрабатываемых почвах и воздействия почвообрабатывающих орудий.

Состояние структуры почвы непосредственно определяет параметры строения пахотного слоя. Для образования прочной структуры почвы необходимы следующие условия:

достаточное количество минеральных и органических коллоидов; достаточное содержание в почве щелочноземельных оснований; благоприятные гидротермические условия в почве; воздействие на почвенную массу корней растений; воздействие на почву почвенной фауны (дождевых червей, насекомых, землероев и др.).

Структурное состояние — наиболее достоверный, интегральный показатель плодородия почвы (его агрофизических факторов).

Мощность пахотного и гумусового слоев

Мощность обрабатываемого слоя почвы, объем почвы, в котором развивается корневая система растений. Глубокий пахотный слой обеспечивает более благоприятные водно-воздушный и тепловой режимы почвы. Осадки, поливная вода быстро поглощаются почвой, аккумулируются в ней и затем потребляются растениями по мере их роста и развития. Глубокий пахотный слой — своеобразный регулятор влажности почвы как при недостатке, так и при избытке выпадающих осадков. Лучшие условия увлажнения почвы обеспечивают благоприятный питательный режим почвы, обусловленный, в свою очередь, нормально протекающими процессами разрушения — синтеза органического вещества. Установлено, что глубокий пахотный слой обеспечивает благоприятную минерализацию органического вещества при одновременной эффективной его гумификации и при благоприятном качественном состоянии.

При обработке почвы на 20—22 см в подпахотном слое нельзя обнаружить такие агрономически ценные группы микроорганизмов, как нитрификаторы, целлюлозоразрушители (Н. В. Мешков и Р. Н. Ходакова). При обработке почвы на 30—40 см эти микроорганизмы широко представлены в почве. Общее количество микроорганизмов в почве и продуцирование почвой СО2 при глубокой обработке возрастало в 1,5—2 раза. Другой показатель производительности почвенных микроорганизмов — превращение азотистых соединений. В глубоком пахотном слое количество нитрифицирующих микроорганизмов, а также почвенной фауны значительно больше. В глубоком пахотном слое увеличивается содержание подвижных форм фосфора и калия.

Водный режим

Влага необходима для прорастания семян, без нее невозможны последующий рост и развитие растения. С водой в растение из почвы поступают питательные вещества, испарение воды листьями обеспечивает нормальные температурные условия жизнедеятельности растения.

Вода — обязательное условие почвообразования и формирования почвенного плодородия. Без нее невозможно развитие почвенной фауны и микрофлоры. Процессы превращения, трансформации и миграции веществ в почве также требуют большого количества воды.

Для определения потребности растений в воде применяют показатель — транспирационный коэффициент - количество весовых частей воды, затраченной на одну весовую часть урожая.

Степень доступности почвенной влаги растениям и состояние водного режима, выражают почвенно-гидролитические константами. Различают следующие почвенно-гидрологические константы:

1. Максимальная адсорбционная влагоемкость (МАВ) — влажность почвы, соответствующая наибольшему содержанию недоступной растениям прочносвязанной влаги.

2. Максимальная гигроскопичность (МГ) — влажность почвы, соответствующая количеству воды, которое почва может сорбировать из воздуха, полностью насыщенного водяным паром. Влага, соответствующая МГ, полностью недоступна растениям.

3. Влажность устойчивого  завядания растений (ВЗ), соответствующая содержанию в почве воды, при котором растения обнаруживают признаки завядания, не проходящие при помещении растений в насыщенную водяным паром атмосферу. Влажность завядания соответствует влажности почвы, когда влага из недоступного для растений состояния переходит в доступное (нижний предел доступности почвенной влаги).

4. Наименьшая (полевая) влагоемкость  почвы (НВ) — соответствует капиллярно-подвешенному насыщению почвы водой, когда последняя максимально доступна растениям.

5. Полная влагоемкость (ПВ) — соответствует такому содержанию влаги в почве, когда все ее поры насыщены водой.

Способность почвы к устойчивому обеспечению растений водой зависит от агрофизических факторов плодородия.

Влагоемкость почвы - называют способность ее удерживать воду. Различают капиллярную, наименьшую (полевую) и полную влагоемкость. Капиллярная влагоемкость определяется количеством воды, содержащимся в капиллярах почвы, подпертых водоносным горизонтом. Наименьшая влагоемкость аналогична капиллярной, но при условии отрыва капиллярной воды от воды водоносного горизонта. Полная влагоемкость — состояние влажности, когда все поры (капиллярные и некапиллярные) полностью заполнены водой.

Информация о работе Биологические факторы плодородия почвы