Автор работы: Пользователь скрыл имя, 04 Августа 2014 в 11:27, контрольная работа
Клеями (адгезивами) называют композиции, применяемые для соединения материалов за счет прочного сцепления между собой их поверхностей и клеевой прослойки. Большинство клеев имеет полимерную органическую основу. В зависимости от вида полимера их разделяют на термопластичные и термореактивные, холодного и горячего отверждения, обычного температурного диапазона применения и термостойкие.
К главным достоинствам склеивания относятся: способность соединять разнородные материалы, стойкость соединения к воздействию окружающей среды, его герметичность. Склеивание отличается простотой технологии и может быть легко механизировано и автоматизировано.
Технологический процесс изготовления МПП на полиимидных пленках начинается с изготовления ДПП. С помощью двустороннего фототравления за один цикл формируются монтажные отверстия диаметром 50-70 мкм на пленке толщиной 50 мкм. При травлении образуется конусообразная форма отверстий, удобная для последующей вакуумной металлизации толщиной 1-2 мкм. После избирательного усиления металлизации слоем гальванической меди и технологическим покрытием (Sn—Ni, Sn—Bi, Sn—Pb) платы поступают на сборку. Многослойные ПП получают приклеиванием двухслойных плат через фигурные изоляционные прокладки из полиимида к жесткому основанию, на котором предварительно сформированы контактные площадки. В качестве основания используются металлические пластины с изолирующим слоем (анодированный алюминий, эмалированная сталь и др.). Электрическое соединение отдельных слоев проводится пайкой в вакууме. Таким образом, можно формировать платы с 15-20 слоями.
Конструкционные материалы печатных плат.
Для изготовления ПП широкое распространение получили слоистые диэлектрики, состоящие из наполнителя и связующего вещества (синтетической смолы, которая может быть термоактивной или термопластичной), керамические и металлические (с поверхностным диэлектрическим слоем) материалы. Выбор материала определяется электроизоляционными свойствами, механической прочностью, обрабатываемостью, стабильностью параметров при воздействии агрессивных сред и изменяющихся климатических условий, себестоимостью. Большинство диэлектриков выпускается промышленностью с проводящим покрытием из тонкой медной электролитической фольги, которая для улучшения прочности сцепления с диэлектрическим основанием с одной стороны оксидирована или покрыта слоем хрома (1-3 мкм). Толщина фольги стандартизирована и имеет значения 5, 18, 35 и 50, 70, 105 мкм. Фольга характеризуется высокой чистотой состава (99,5%), пластичностью, высотой микронеровностей 0,4-0,5 мкм.
В качестве основы в слоистых пластиках используют электроизоляционную бумагу или стеклянную ткань. Их пропитывают фенольной или фенолэпоксидной смолой. Фольгирование диэлектриков с одной или с двух сторон осуществляют прессованием при температуре 160-180 °С и давлении 5-15 МПа. Фольгированные слоистые диэлектрики поставляются в виде листов размерами от 400 до 1100 и толщиной 0,06-3 мкм. Их используют при субтрактивных методах изготовления ПП и МПП. Гетинакс, обладая удовлетворительными электроизоляционными свойствами в нормальных климатических условиях, хорошей обрабатываемостью и низкой стоимостью, нашел применение в производстве несложной РЭА. Для ПП, эксплуатирующихся в сложных климатических условиях, используют более дорогие, обладающие лучшими техническими характеристиками стеклотекстолиты. Они отличаются широким диапазоном рабочих температур (-60 ... +150°С), низким (0,2-0,8%) водопоглощением, высокими значениями объемного и поверхностного сопротивлений, стойкостью к короблению. Наличие в коммутирующих устройствах мощных цепей питания и блоков высокого напряжения увеличивает опасность возгорания ПП. Повышение огнестойкости диэлектриков достигается введением в их состав антипиренов.
Ниже в таблице представлены материалы основания ПП, наиболее часто используемые в настоящее время для изготовления ОПП, ДПП.
Материал |
Марка |
Толщина, мм |
Материал |
Марка |
Толщина, мм |
Гетинакс фольгированный |
ГФ-1-35 |
1,0; 1,5; 2,0; 2,5; 3,0 |
Диэлектрик фольгированный общего назначения с гальваностойкой фольгой |
ДФО-1, ДФО-2 (фольга 35 мкм) ДФС-1, ДФС-2 (фольга 20 мкм) |
0,06-2,0 |
Гетинакс фольгированный с гальваностойкой фольгой |
ГФ-1-35Г ГФ-2-35Г ГФ-1-50Г ГФ-2-50Г |
| Диэлектрик фольгированный самозатухающий с гальваностойкой фольгой |
| |
Стеклотекстолит фольгированный |
СФ-1-35 СФ-2-35 СФ-1-50 СФ-2-50 |
0,5; 1,0; 1,5; 2,0; 2,5; 3,0 |
Стеклотекстолит фольгированный с повышенной на-гревостойкостью |
СФПН-1-50 СФПН-2-50 |
0,5; 1,0; 1,5; 2,0; 2,5; 3,0 |
То же с гальваностойкой фольгой |
| Стеклотекстолит фольгированный общего назначения |
СОНФ-1 СОНФ-2 |
— | |
Стеклотекстолит теплостойкий фольгированный с гальваностойкой фольгой |
СТФ-1-35 СТФ-2-35 СТФ-1-18 СТФ-2-18 |
0,08; 0,1; 0,13; 0,2; 0,15; 0,3; 0,25; 0,5; 0,35; 0,8; 1,5; 2,5; 1; 2;3 |
Гетинакс фольгированный общего назначения |
ГОФ-1-35Г ГОФ-2-35Г |
— |
| Стеклотекстолит с двусторонним адгезионным слоем |
СТЭК |
1,0; 1,5 | ||
Стеклотекстолит теплостойкий и негорючий фольгированный с гальваностойкой фольгой |
СТНФ-1-35 СТНФ-2-35 СТНФ-1-18 СТНФ-2-18 |
| Стеклотекстолит теплостойкий, армированный алюминиевым протектором |
СТПА-5-1 СТПА-5-2 (фольга 5 мкм) |
0,1-2,0 |
Стеклотекстолит листовой |
СТЭФ-1-2ЛК |
1;2 |
Стеклотекстолит с катализатором |
СТАМ |
0,7-2,0 |
Стеклотекстолит электротехнический |
СТЭФ-ВК-1-1,5 |
| Фольгированный армированный фторопласт |
ФАФ-4 (фольга 35 мкм) |
— |
Стеклотестолит фольгированный теплостойкий |
СТФТ |
— |
Стеклотекстолит теплостойкий |
СТАЛ (фольга 5, 18, 35, 50, 70 и 100 мкм на медном или алюминиевом протекторе) |
— |
По сравнению с гетинаксами стеклотекстолиты имеют лучшие механические и электрические характеристики, более высокую нагревостойкость, меньшее влагопоглощение. Однако у них есть ряд недостатков: худшая механическая обрабатываемость; более высокая стоимость; существенное различие (примерно в 10 раз) коэффициента теплового расширения меди и стеклотекстолита в направлении толщины материала, что может привести к разрыву металлизации в отверстиях при пайке или в процессе эксплуатации.
Для изготовления ПП, обеспечивающих надежную передачу наносекундных импульсов, необходимо применять материалы с улучшенными диэлектрическими свойствами (уменьшенным значением диэлектрической проницаемости и тангенса угла диэлектрических потерь). Поэтому к перспективным относится применение оснований ПП из органических материалов с относительной диэлектрической проницаемостью ниже 3,5.
Нефольгированные диэлектрики применяют при полуаддитивном и аддитивном методах производства ПП. Для улучшения прочности сцепления металлического покрытия с основанием на его поверхность наносят тонкий (50-100 мкм) полуотвержденный клеевой слой (например, эпоксидкаучуковую композицию). Введение в лак, пропитывающий стеклоткань, 0,1-0,2 мас. % палладия, смеси палладия с оловом или закиси меди незначительно снижает сопротивление изоляции, но повышает качество металлизации.
Соединение отдельных слоев МПП осуществляют специальными склеивающими прокладками, которые изготавливают из стеклоткани, пропитанной недополимеризованной эпоксидной смолой. Содержание смолы в прокладках должно быть в пределах 42-52%, а летучих веществ не более 0,75 %. Длительное сохранение клеящих свойств межслойных прокладок достигается их консервацией в герметически упакованных полиэтиленовых мешках при пониженной (+10°С) температуре.
Для производства печатных кабелей применяют армированные фольгированные пленки из фторопласта-4 и полиэфирные пленки. Прямое прессование медной фольги с термопластичным основанием позволяет добиться геометрической стабильности материала при кратковременном изменении температуры до 180-200 °С. Более высокой термостабильностью (до 250 °С), прочностью на растяжение, несгораемостью, радиационной стойкостью, а также способностью к равномерному травлению в щелочных растворах обладают полиимидные пленки, но высокая стоимость и водопоглощение ограничивают их широкое применение коммутационными ДПП и МПП в микроэлектронной аппаратуре. Термопластичные материалы, обладающие повышенной текучестью, используются при изготовлении рельефных ПП. К ним относятся сложные композиции, основу которых составляют полиэфирсульфоны и полиэфиримиды. Введение в пластмассы стеклянного наполнителя увеличивает их рабочую температуру до 260 °С, что позволяет проводить пайку монтируемых элементов расплавлением дозированного припоя в паровой фазе.
В качестве основы для ПП СВЧ-диапазона используют неполярные полимеры (фторопласт, полиэтилен, полипропилен), полярные (полистирол, полифениленоксид) и их сополимеры. Направленное изменение свойств термопластичных материалов достигается наполнением (алунд, двуокись титана), армированием (стеклоткань) и плакированием (медная фольга).
Керамические материалы характеризуются высокой механической прочностью, которая незначительно изменяется в диапазоне температур 20-700 °С, стабильностью электрических характеристик и геометрических параметров, низким (0-0.2%) водопоглощением и газовыделением при нагреве в вакууме, хрупкостью и высокой стоимостью. Промышленность выпускает их в виде пластинок размером от 20х16 до 60х48 мм с высотой микронеровостей 0,02-0,1 мкм и разнотолщинностью ±0,01-0,05 мм. Они предназначены для изготовления одно- и многослойных коммутационных плат микросборок для СВЧ диапазона.
Металлические платы применяются в изделиях с большой токовой нагрузкой, работающих при повышенных температурах. В качестве основы используется алюминий или сплавы железа с никелем. Изолирующий слой на поверхности алюминия получают анодным оксидированием. Варьируя состав электролита и режим электролиза, можно формировать оксидные пленки толщиной от нескольких десятков до сотен микрон с сопротивлением изоляции 109-1010 0м. На стальных основаниях изолирование токопроводящих участков осуществляют с помощью специальных эмалей, изготавливаемых в виде тонких пленок. В состав эмалей входят оксиды магния, кальция, кремния, бора, бериллия, алюминия или их смеси, связка (поливинилхлорид, поливинилацетат или метилметакрилат) и пластификатор. Пленка соединяется с основанием путем прокатки между вальцами с последующим вжиганием. Таким образом, можно создавать многослойные структуры с различными механическими и электрическими характеристиками.
Для изготовления ГПК, выдерживающих многократные (до 150) изгибы на 90° с радиусом 3 мм, применяют фольгированный лавсан и фторопласт. Материалы с толщиной фольги 5 мкм позволяют изготовить ПП 4-го и 5-го классов точности.
Точность и разрешающая способность получаемых ПП определяются качеством используемой технологической оснастки, основными видами которой являются фотошаблоны, сетчатые трафареты и печатные формы (клише).
Изготовление фотошаблонов.
Изображение рисунка проводников ПП, разработанное на стадии создания конструкторской документации на изделие, должно быть перенесено на защитную маску фото- или металлорезиста в зависимости от типа применяемого процесса для создания ПП. Для переноса изображения предназначены фотошаблоны (ФШ), представляющие собой негативное или позитивное отображение конфигурации печатных проводников, выполненное в натуральную величину на светопроницаемом основании. Комплектом фотошаблонов называют то количество фотошаблонов, совмещающихся между собой, которое необходимо и достаточно для изготовления ПП определенного типа и наименования. По назначению они разделяются на контрольные (эталоны), и рабочие, которые изготавливаются с контрольных методом контактной печати и служат для перенесения имеющегося на них рисунка на плату.
Изображение элементов на фотошаблоне должно соответствовать требованиям чертежа и быть черно-белым, контрастным с четкими и ровными границами при оптической плотности темных полей не менее 2,5-3 ед. и прозрачных участков не более 0,15-0,2 ед., замеренной с точностью ±0,02 ед. на фотоэлектрическом денситометре типа. Размеры печатных проводников и контактных площадок устанавливаются с учетом величины подтравливания. Фотошаблон должен быть износостойким, иметь минимальную деформацию при изменении температуры и влажности окружающей среды. В большей степени перечисленным требованиям удовлетворяют сверхконтрастные фотопластинки и полированные силикатные стекла с металлизированными поверхностями, на которых получают контрольные фотошаблоны. Рабочие фотошаблоны изготавливают на малоусадочных (не более 0,01-0,03%) фотопленках.
На фотошаблоны наносят также технологические контрольные знаки. Контрольный знак - специальный топологический элемент в виде штриха, щели, креста и пр., служащий для контроля точности изготовления оригиналов и фотошаблонов и применяемый для совмещения фотошаблонов слоев двусторонних и многослойных ПП, а также при выполнении операции мультипликации.
Обычно фотошаблоны получают на основе оригинала ПП, выполненного также на материале, который имеет стабильные размеры (органическое или силикатное стекло, алюминий, лавсан и др.), но в увеличенном масштабе 2:1,4:1, 10:1. Оптимальный масштаб выбирается исходя из габаритов ПП, требуемой точности получения фотошаблона и погрешности изготовления оригинала выбранным методом:
M = dор/dфш,
где dор, dфш - половина поля допуска на изготовление оригинала и фотошаблона. Основными методами получения оригиналов являются вычерчивание, наклеивание липкой ленты и вырезание эмали.
Вычерчивание изображения оригинала на специальной бумаге или малоусадочной пленке, на которую предварительно наносится непроявляющейся синей краской с шагом 2,5±0,05 мм координатная сетка, осуществляют вручную (в основном, для макетных работ) или на автоматическом чертежном аппарате, управляемом координатографом.
Метод аппликаций состоит в наклеивании на прозрачное основание калиброванных одиночных и групповых элементов, изготовленных из светонепроницаемой безусадочной антистатической пленки. Для получения изображения ДПП на одну сторону основания наклеивают красные (желтые) элементы, а на другую синие (фиолетовые). Последующее фотографирование через соответствующий светофильтр обеспечивает получение совмещенного оригинала рисунков с точностью ±0,2 мм. Метод рекомендуется для изготовления ОПП и ДПП, простых по конструкции, с пониженной плотностью монтажа.