Автор работы: Пользователь скрыл имя, 18 Июня 2014 в 18:51, курсовая работа
Современные организации характеризуются большим объемом раз-личной информации, в основном электронной и телекоммуникационной, ко-торая проходит через них каждый день. Поэтому важно иметь высококаче-ственный выход на коммутационные узлы, которые обеспечивают выход на все важные коммуникационные линии. В России, где расстояния между насе-ленными пунктами огромное, а наземные линии не всегда обладают необхо-димыми параметрами и качеством связи, оптимальным решением этого во-проса является применение сетей спутниковой связи (ССС). Системы спутниковой связи широко используются во многих регионах мира и стали неотъемлемой частью инфраструктуры телекоммуникаций большинства стран. Не только промышленно развитые страны с разнооб-разными современными сетями телекоммуникаций, но все чаще и развиваю-щиеся страны успешно внедряют ССС.
ВВЕДЕНИЕ 3
1. СИСТЕМЫ СПУТНИКОВОЙ РАДИОСВЯЗИ И РАДИОВЕЩАНИЯ 4
1.1 КРАТКАЯ ИСТОРИЯ СПУТНИКОВОЙ СВЯЗИ 4
1.2 ОРГАНИЗАЦИЯ СПУТНИКОВОГО СТВОЛА 6
1.3 КОСМИЧЕСКИЙ СЕГМЕНТ 7
1.4 СИГНАЛЬНАЯ ЧАСТЬ 9
1.5 НАЗЕМНЫЙ СЕГМЕНТ 12
1.6 СИСТЕМА ALOHA 14
1.7 ПРЕИМУЩЕСТВА И ОГРАНИЧЕНИЯ ССС 16
2. ВИДЫ СПУТНИКОВЫХ СИСТЕМ И ИХ ОРБИТЫ 18
2.1 СИСТЕМА ODYSSEY 18
2.1.1 КОСМИЧЕСКИЙ СЕГМЕНТ И ЗОНЫ ОБСЛУЖИВАНИЯ 19
2.1.2 НАЗЕМНЫЙ СЕГМЕНТ И ОРГАНИЗАЦИЯ СВЯЗИ 22
2.1.3 УСЛУГИ СИСТЕМЫ ODYSSEY 25
2.2 МЕЖДУНАРОДНАЯ СИСТЕМА IСО 26
2.2.1 ЧАСТОТНОЕ ОБЕСПЕЧЕНИЕ 26
2.2.2 КОСМИЧЕСКИЙ СЕГМЕНТ 27
2.2.3 НАЗЕМНЫЙ СЕГМЕНТ И ОРГАНИЗАЦИЯ СВЯЗИ 30
2.2.4 ТЕРМИНАЛЫ ПОЛЬЗОВАТЕЛЯ 32
2.2.5 УСЛУГИ СИСТЕМЫ IСО 33
2.2.6 РОССИЙСКИЙ СЕГМЕНТ СЕТИ IСО 34
2.3 СИСТЕМА ГЛОНАСС 35
2.3.1 ОСНОВНЫЕ ПРИНЦИПЫ РАБОТЫ СИСТЕМЫ ГЛОНАСС 35
2.3.2 СТРУКТУРА СИГНАЛА ГЛОНАСС 37
2.3.3 СПУТНИК ГЛОНАСС 39
3. ЭНЕРГЕТИЧЕСКИЙ РАСЧЕТ ЛИНИИ СПУТНИКОВОЙ СВЯЗИ 43
ЗАКЛЮЧЕНИЕ 48
СПИСОК ЛИТЕРАТУРЫ 49
Система ICO использует для связи L- и С-диапазоны частот, поддерживая цифровую обработку сигнала на борту спутника. В качестве базовой технологии определен метод многостанционного доступа с временным разделением каналов (TDMA).
При определении оптимальных полос частот для абонентских линий связи были рассмотрены несколько вариантов. Принимались во внимание следующие соображения. Диапазон 1,5/1,6 ГГц, широко используемый для подвижных спутниковых служб (ПСС), очевидно, окажется чрезмерно перегруженным, что сильно ограничит потенциал служб ICO. Диапазон 1,6/2,4 ГГц, выделенный службе ПСС на Всемирной административной конференции по радиосвязи (WARC-92), чреват серьезными проблемами координации с другими службами, которые применяют этот диапазон, например для фиксированной наземной связи; кроме того, США намерены использовать его для национальных систем.
Наконец, были выбраны следующие диапазоны: «терминал-спутник» — диапазон 1980— 2010 МГц, «спутник-терминал» — 2170-2200 МГц.
Для организации связи между КА и узловыми станциями предназначены фидерные линии. Для их работы Всемирная конференция по радиосвязи WRC-95 рекомендовала диапазон 5/7 ГГц («узловая станция—спутник» диапазон 5150-5250 МГц, «спутник—узловая станция» - 6975-7075 МГц).
Система ICO состоит из космического, наземного и пользовательского сегментов. Космический сегмент включает в себя 12 КА (10 рабочих и 2 резервных), запущенных на круговую орбиту высотой 10 355 км над поверхностью Земли. Стартовая масса спутника — 2750 кг, расчетный период эксплуатации — 12 лет. Спутники размешены в двух ортогональных плоскостях, по 6 КА в каждой. Угол наклона орбиты к плоскости экватора составит 45°.
Такая орбитальная группировка обеспечивает глобальный охват поверхности Земли, в том числе полярных районов. Вследствие перекрытия зон охвата в пределах видимости каждой точки зоны обслуживания одновременно находятся два—четыре КА. Один спутник обслуживать приблизительно 25% поверхности Земли (рис. 2.4). Первый спутник системы ICO был запущен в 1998 г.; ввод системы в эксплуатацию произведен в 2000 г.
Рис. 2.4 Диаграмма мгновенной зоны покрытия
поверхности Земли системой ICO при использовании
10 КА [http://www.osp.ru/data/317/
Продолжительность обслуживания абонентов определяется следующими величинами:
• временем пролета одного спутника над зоной обслуживания;
• средним временем, затрачиваемым на переключение абонента с уходящего за горизонт КА на восходящий КА;
• продолжительностью установления соединения, определяемого схемой организации связи. Средняя продолжительность обслуживания абонентов составит 50 мин; максимальное время пребывания одного КА в зоне радиовидимости может достигать 1,5-2 ч.
В системе ICO применены, главным образом, уже известные и проверенные технические решения. Для изготовления спутников используется спутниковая платформа HS-601 корпорации Hughes Space and Communications (США), применяющуюся для создания крупногабаритных спутников на геостационарной орбите. В конструкцию внесены изменения, в частности переработанная программа ориентации бортовых антенн и панелей солнечных батарей, установлена упрощенная двигательная установка.
Чтобы исключить взаимовлияние системой IСО при использовании 10 КА трактов приема и передачи, на КА применяются раздельные антенны для каждого диапазона частот. Антенна L-диапазона имеет диаметр 2 м. Использование многолучевой диаграммообразуюшей схемы обеспечивает многократное назначение частот. Согласно проекту, в системе ICO для приема/передачи служат 163 раздельных луча (запас по энергетике составит 8—10 дБ); зона обслуживания одного КА — примерно 7 тыс. км (рис. 2.5). Спутники с установленными на них ретрансляторами С- и S-диапазонов одновременно поддерживают 4500 телефонных каналов.
Рис. 2.5 Зона обслуживания одного КА (163
луча) системы ICO [http://www.osp.ru/data/323/
В системе ICO не предусмотрена бортовая обработка сигнала в полном объеме. Однако управление назначением частот и маршрутизация сигнала осуществляются с помощью бортового процессора.
Применение арсенид-галиевых батарей обеспечивает в конце эксплуатации потребляемую мощность 8700 Вт. В предварительном списке ракетоносителей, которые произвели запуск спутников системы ICO, числятся Atlas IIA, Delta III, «Протон» и «Зенит» (для запуска с морских площадок).
В состав наземного сегмента входят центр управления спутниковой группировкой SCC (Satellite Control Centre), центр управления наземной сетью (Network Management Centre) и наземная сеть ICONET (ICO network),( рис. 2.6).
Рис. 2.6 Структура системы ICO (схематично) [http://www.osp.ru/data/321/
NMS, центр управления наземной сетью ICONET, размещен в Японии, а центр SCC — в Лондоне. В функции последнего входят поддержание орбитальной группировки в работоспособном состоянии, сбор телеметрических данных об отдельных подсистемах КА, контроль рабочих параметров и др. Службы SCC несут ответственность за запуск КА, управление и перераспределение частот между лучами КА.
Спутниковые каналы подключаются к существующим сетям связи через собственную сеть ICONET, которая на первом этапе внедрения состоит из 12 наземных станций — так называемых спутниковых узлов доступа SAN (Satellite Access Node). Узлы SAN служат «шлюзами» между спутниками ICO и абонентами наземных сетей общего пользования. Магистральные каналы с высокой пропускной способностью связывают узлы между собой.
Связь между абонентами (как и в существующей системе Inmarsat) организуется только через узлы SAN; непосредственная связь абонентов не поддерживается. Радиотелефонный терминал IСО работает в двух режимах — через КА системы IСО или наземные базовые станции сотовой связи — и совместим с ее основными стандартами. Для связи с подвижными объектами применяются специальные терминалы.
В спутниковой сети IСО в качестве базового используется портативный двухрежимный терминал, совмещенный с сотовым телефоном стандарта GSM (или CDMA, D-AMPS, РDС). Предполагается разработка однорежимного радиотелефонного терминала, работающего только через КА системы IСО. Основные характеристики базового терминала:
Портативный радиотелефонный терминал IСО отвечает всем требованиям безопасности, связанным с работой в ВЧ-диапазоне. Средняя мощность передатчика не превышает 0,25 Вт (для сравнения: мощность сотовых радиотелефонов равна 0,25—0,6 Вт).
На основе технологии, используемой в базовом терминале, могут быть созданы различные модификации абонентских терминалов. Это, например, терминал только для передачи данных, терминалы в автомобильном, морском и воздушном исполнении, полустационарные («сельский таксофон») и стационарные, а также необслуживаемые (SCADA unit) терминалы. Компания IСО заключила соглашение на разработку 3 млн. портативных терминалов с тремя ведущими компаниями — Panasonic, NEC и Mitsubishi.
Пользователям предоставлены следующие виды услуг: двусторонняя речевая связь, передача факсимильных сообщений группы 3, передача данных со скоростью 2,4 кбит/с. Качество речевой связи соответствует стандарту GSM для сотовых сетей. Предусмотрена пейджинговая связь с глубоким проникновением (т. е. с большим запасом по энергетике канала), а также дополнительные услуги — речевой вызов, связь с оплатой по кредитной карточке, отображение номера вызывающего абонента на встроенном в терминал индикаторе, определение местоположения абонента. При отсутствии КА в пределах прямой видимости имеется оповещение абонентов о вызове, о наличии сообщения электронной почты и отображение на дисплее номера вызывающего абонента.
Разработчики видят пять ключевых областей применения системы IСО:
• расширение спектра услуг для абонентов спутниковой связи в районах, уже охваченных сотовыми сетями;
• подвижная связь общего пользования через портативные радиотелефонные терминалы в районах, не охваченных сотовой связью или использующих несовместимые стандарты;
• специализированная подвижная связь для грузовых перевозок, а также обеспечение автомобильной, морской и воздушной связи;
• полуфиксированая связь для корпоративных пользователей нефте- и газодобывающей промышленности, малого бизнеса (склады, большие магазины и др.);
• связь для государственных структур.
Пропускная способность системы составляет 1 млн. абонентов при средней продолжительности разговоров 60 мин/мес. Для сравнения: по прогнозам специалистов, в системе Iridium при тех же условиях число пользователей равно 600—800 тыс., а в Globalstar — 1 млн. Разработка и изготовление 12 КА оцениваются в 1,3 млрд. долларов, а их запуск обойдется в 900 млн. долларов. Согласно расчетам специалистов ICO, цена абонентской аппаратуры составит 750-1500 долларов, а стоимость минуты разговора около - 2 дол.
В последнее время российский рынок становится все более привлекательным для зарубежных поставщиков средств и услуг спутниковой связи. Персональная радиотелефонная связь позволяет абоненту связаться с любой точкой планеты в условиях сельской местности, в удаленных и труднодоступных районах, где реализация обычных наземных кабельных систем весьма проблематична.
В настоящее время известны два крупных проекта, включающих в себя создание российских сегментов систем персональной спутниковой связи, — это проекты Iridium и Globalstar. Вероятно, вскоре в России появится система IСО, интересы которой готово представлять ГП «Морсвязьспутник».
Во время своего последнего приезда в Москву г-н Лундберг, главный исполнительный директор ICO, сообщил, что компания намерена инвестировать около 400 млн. долларов в российскую часть проекта. ICO собирается предлагать на российском рынке три вида услуг:
• персональную связь для бизнесменов;
• обеспечение грузовых автомобильных и морских перевозок;
• персональную связь для средств массовой информации, министерств и других правительственных учреждений. [4]
2.3.1 Основные принципы работы системы ГЛОНАСС
Спутники системы ГЛОНАСС непрерывно излучают навигационные сигналы двух типов: навигационный сигнал стандартной точности (СТ) в диапазоне L1 (1,6 ГГц) и навигационный сигнал высокой точности (ВТ) в диапазонах L1 и L2 (1,2 ГГц). Информация, предоставляемая навигационным сигналом СТ, доступна всем потребителям на постоянной и глобальной основе и обеспечивает, при использовании приемников ГЛОНАСС возможность определения:
Эти точности можно значительно улучшить, если использовать дифференциальный метод навигации или дополнительные специальные методы измерений. Для определения пространственных координат и точного времени требуется принять и обработать навигационные сигналы не менее чем от 4-х спутников ГЛОНАСС. При приеме навигационных радиосигналов ГЛОНАСС приемник, используя известные радиотехнические методы, измеряет дальности до видимых спутников и измеряет скорости их движения. Одновременно с проведением измерений в приемнике выполняется автоматическая обработка содержащихся в каждом навигационном радиосигнале меток времени и цифровой информации. Цифровая информация описывает положение данного спутника в пространстве и времени (эфемериды) относительно единой для системы шкалы времени и в геоцентрической связанной декартовой системе координат. Кроме того, цифровая информация описывает положение других спутников системы (альманах) в виде кеплеровских элементов их орбит и содержит некоторые другие параметры. Результаты измерений и принятая цифровая информация являются исходными данными для решения навигационной задачи по определению координат и параметров движения. Навигационная задача решается автоматически в вычислительном устройстве приемника, при этом используется известный метод наименьших квадратов. В результате решения определяются три координаты местоположения потребителя, скорость его движения и осуществляется привязка шкалы времени потребителя к высокоточной шкале Координированного всемирного времени (UTC).
2.3.2 Структура сигнала ГЛОНАСС
Сигнал в диапазоне L1 (аналогичен C/A-коду в GPS) доступен для всех потребителей в зоне видимости КА. Сигнал в диапазоне L2 предназначен для военных нужд, и его структура не раскрывается. Для навигационных радиосигналов ЦИ формируется на борту НКА на основе данных, передаваемых от НКУ системы на борт НКА с помощью радиотехнических средств. Передаваемая в навигационных радиосигналах ЦИ структурирована в виде строк, кадров и суперкадров. В узкополосном навигационном радиосигнале 1600 МГц строка ЦИ имеет длительность 2 с (вместе с МВ) и содержит 85 двоичных символов длительностью по 20 мс, передаваемых в относительном коде. Первый символ каждой строки является начальным (“холостым”) для относительного кода. Последние восемь символов в каждой строке являются проверочными символами кода Хемминга, позволяющие исправлять одиночный ошибочный символ и обнаруживать два ошибочных символа в строке. Кадр содержит 15 строк (30 с), суперкадр 5 кадров (2,5 мин). В составе каждого кадра передается полный объем оперативной ЦИ и часть альманаха системы. Полный альманах передается в пределах суперкадра. Оперативная ЦИ в кадре относится к НКА, излучающему навигационный радиосигнал, и содержит:
Информация о работе Спутниковые системы радиосвязи и радиовещания