Согласование характеристик разрядника и защищаемого оборудования

Автор работы: Пользователь скрыл имя, 26 Марта 2014 в 21:16, реферат

Краткое описание

При работе электрических установок возникают напряжения, которые могут значительно превышать номинальные значения (перенапряжения). Эти перенапряжения могут пробить электрическую изоляцию элементов оборудования и вывести установку из строя. Чтобы избежать пробоя электрической изоляции, она должна выдерживать эти перенапряжения, однако габаритные размеры оборудования получаются чрезмерно большими, так как перенапряжения могут быть в 6-8 раз больше номинального напряжения. С целью облегчения изоляции возникающие перенапряжения ограничивают с помощью разрядников и изоляцию оборудования выбирают по этому ограниченному значению перенапряжений. Возникающие перенапряжения делят на две группы: внутренние (коммутационные) и атмосферные. Первые возникают при коммутации электрических цепей (катушек индуктивностей, конденсаторов, длинных линий), дуговых замыканиях на землю и других процессах.

Содержание

1.Общие сведения
3
2.Трубчатые разрядники
6
3.Вентильные разрядники
8
4.Разрядники постоянного тока
13
5.Ограничители перенапряжений
14
6.Длинно-искровые разрядники

Прикрепленные файлы: 1 файл

Разрядники Реферат.docx

— 2.34 Мб (Скачать документ)

Обычно несколько рабочих резисторов в виде дисков соединяются последовательно (на рис.3,а изображено 10 дисков). При наличии n дисков остающееся напряжение

 

 

Для уменьшения остающегося напряжения число дисков n должно быть как можно меньше.

При прохождении тока температура дисков повышается. При протекании импульса тока большой амплитуды, но малой длительности (десятки микросекунд) резисторы не успевают нагреваться до высокой температуры. При длительном протекании даже небольших токов промышленной частоты (один полупериод равен 10 мс) температура может превысить допустимое значение, диски теряют свои вентильные свойства, и разрядник выходит из строя.

Предельно допустимая амплитуда импульса тока для диска диаметром 100 мм равна 10 кА при длительности импульса 40 мкс. Допустимая амплитуда прямоугольного импульса с длительностью 2000 мкс не превышает 150 А. Такие токи диск без повреждения пропускает 20-30 раз.

После прохождения импульсного тока через разрядник начинает протекать сопровождающий ток, представляющий собой ток промышленной частоты. По мере приближения тока к нулевому значению сопротивление вилита резко увеличивается, что ведет к искажению синусоидальной формы тока. Увеличение сопротивления цепи ведет к уменьшению тока и угла сдвига фаз φ между током и напряжением (φ->0). На рис.5,б показаны кривые токов в рабочем резисторе. Здесь 1 -напряжение источника 50 Гц; 2 -кривая тока цепи, определяемого индуктивным сопротивлением Х; 3 -кривая тока, определяемого рабочим резистором (Rр>>X). Из-за нелинейности резистора Rp уменьшается возвращающееся напряжение (напряжение промышленной частоты). Уменьшение скорости подхода тока к нулю уменьшает мощность дуги в области нулевого значения тока. Все это облегчает процесс гашения дуги, горящей между электродами разрядного промежутка. Благодаря применению латунных электродов в искровых промежутках после прохода тока через нуль около каждого катода образуется промежуток, электрическая прочность которого 1,5 кВ. Это обеспечивает гашение сопровождающего тока при первом прохождении тока через нуль и позволяет погасить дугу в искровых промежутках без применения специальных дугогасительных устройств.

Устройство искрового промежутка вентильного разрядника ясно из рис.4,б. Форма электродов обеспечивает равномерное электрическое поле, что позволяет получить пологую вольт-секундную характеристику. Расстояние между электродами принимается (0,5-1)·10-3 м.

Возникновение заряда в закрытом объеме разрядника при малой длительности импульса тока затруднено. Для облегчения ионизации искрового промежутка между электродами помещается миканитовая прокладка. Так как диэлектрическая проницаемость воздуха значительно меньше, чем у входящей в состав миканита слюды, то в приэлектродном объеме воздуха возникают высокие градиенты электрического поля, вызывающие его начальную ионизацию. Образующиеся электроны приводят к быстрому формированию разряда в центре искрового промежутка.

Искровые промежутки последовательно соединяются, образуя блок (см. рис.4,б). Обычно разрядник имеет несколько таких блоков. Результирующая вольт-секундная характеристика последовательно соединенных промежутков достаточно пологая.

Экспериментально установлено, что одиночный искровой промежуток способен отключить сопровождающий ток с амплитудой 80—100 А при действующем значении напряжения 1—1,5 кВ. Число единичных

промежутков выбирается исходя из этого напряжения. Количество дисков рабочего резистора должно быть таким, чтобы максимальное значение тока не превысило 80—100 А. При этом гашение дуги обеспечивается за один по л у пери од.

Для обеспечения равномерной нагрузки при промышленной частоте промежутки шунтируются нелинейными резисторами 1 (рис.4). Термическая стойкость дисков рассчитана на пропускание сопровождающего тока в течение одного-двух полупериодов.

Внутренние перенапряжения имеют низкочастотный характер и могут длиться до 1 с. Вследствие малой термической стойкости вилит не может быть использован для ограничения внутренних перенапряжений. Для ограничения внутренних перенапряжений используется аналогичный вилиту материал тервит, обладающий большой термической стойкостью и повышенным показателем нелинейности α=0,15- 0,29.

 

 

Рис.6. Комбинированный разрядник с тервитовыми резисторами

 

Тервитовые диски используются в комбинированных разрядниках (рис.6,а), предназначенных для защиты как от внутренних (коммутационных), так и от внешних (атмосферных) перенапряжений. При внутренних перенапряжениях работают оба нелинейных резистора НР1 и НР2 (кривая 1 иа рис.6,б). При атмосферных перенапряжениях из-за большого тока напряжение на НР2 пробивает промежуток ИП2 и напряжение на защищаемой линии снижается (кривая 2).

Вентильные разрядники работают бесшумно. Число срабатываний фиксируется специальным регистратором, который включается между нижним выводом разрядника и заземлением. Наиболее надежны электромагнитные регистраторы, якорь которых при прохождении импульсного тока воздействует на храповой механизм счетного устройства.

С помощью искровых промежутков, показанных на рис. 4,б невозможно отключение токов 200—250 А. В этом случае для гашения дуги применяются камеры магнитного дутья с постоянным магнитом. Дуга, возникающая в искровом промежутке, под воздействием магнитного поля загоняется в узкую щель с керамическими станками. На этом принципе созданы разрядники на напряжение до 500 кВ. Увеличение диаметра дисков до 150 мм позволяет поднять их термическую стойкость. В результате комбинированные магнитно-вентильные разрядники позволяют ограничивать как внутренние, так и атмосферные перенапряжения.

Основные характеристики вентильного разрядника:

1.Напряжение гашения Uгаш - наибольшее приложенное к разряднику напряжение промышленной частоты, при котором надежно обрывается сопровождающий ток. Это напряжение определяется свойствами разрядника. Напряжение промышленной частоты, прикладываемое к разряднику, зависит от параметров схемы. Если при КЗ на землю одной фазы на свободных фазах появляется перенапряжение, то напряжение гашения, прикладываемое к разряднику, определяется уравнением

 

 

где Кз - коэффициент, зависящий от способа заземления нейтрали; Uном - номинальное линейное напряжение сети. Для установок с заземленной нейтралью Кз=0,8, для изолированной нейтрали Кз = l,l.

2.Ток гашения Iгаш, под которым понимается сопровождающий ток, соответствующий напряжению гашения Uгаш.

3.Дугогасящее действие искрового промежутка характеризуется коэффициентом

 

где Uпр - напряжение пробоя частотой 50 Гц искрового промежутка.

 

4. Защитное действие нелинейного  резистора характеризуется коэффициентом защиты

 

 

где Uост - напряжение на разряднике при импульсном токе 5—14 кА. Это напряжение должно быть на 20—25 % ниже разрядного напряжения защищаемой изоляции.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.Разрядники постоянного тока

Рис.7. Разрядник постоянного тока

 

Для защиты установок от перенапряжений постоянного тока могут быть применены вентильные разрядники. Однако гашение дуги постоянного тока значительно сложнее, чем переменного. Для использования околоэлектродного падения напряжения требуется очень большое число искровых промежутков, так как на каждой паре электродов напряжение не должно превышать 20—30 В.

Для гашения дуги целесообразно использовать магнитное дутье с помощью постоянных магнитов. Возникающая при этом электродинамическая сила с большой скоростью перемещает дугу в узкой щели из дугостойкого изоляционного материала. В результате интенсивного охлаждения дуги ее сопротивление увеличивается и ток прекращается.

Вентильный разрядник для сети с напряжением 3 кВ постоянного тока показан на рис.7. Рабочий резистор 1 состоит из двух вилитовых дисков, соединенных с двумя искровыми промежутками 2 с магнитным гашением дуги. Надежное контактирование промежутков и дисков достигается с помощью пружины 3, одновременно являющейся токоподводящим элементом. Основные элементы разрядника располагаются в фарфоровом кожухе 6, который закрыт снизу крышкой 7. Герметизация разрядника осуществляется крышкой 4 с резиновым уплотнением 5.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.Ограничители перенапряжений

На основе оксида цинка, имеющего резко выраженную нелинейность вольт-амперной характеристики, разработана серия нелинейных ограничителей перенапряжений (ОПН) на номинальное напряжение 110—500 кВ.

ОПН представляет собой нелинейный резистор с высоким коэффициентом нелинейности α=0,04 (против 0,1 —0,2 для вилита). Он включается параллельно защищаемому объекту (между потенциальным выводом и землей) без разрядных промежутков. Благодаря высокой нелинейности при номинальном фазном напряжении через ОПН протекает ничтожный ток 1 мА. При увеличении напряжения сопротивление ОПН резко уменьшается, ток, протекающий через него, растет. При напряжении 2,2Uф через ОПН протекает ток 104 А. После прохождения импульса напряжения ток в цепи ОПН определяется фазным напряжением сети.

Рис.8. Вольт-амперная характеристика ограничителя ОПН-500

 

ОПН ограничивают коммутационные перенапряжения до уровня 1,8Uф и атмосферные перенапряжения до (2-2,4)Uф. Из вольт-амперной характеристики ОПН-500 (рис.8) видно, что при снижении перенапряжений с 2Uф до Uф ток, протекающий через резисторы, уменьшается в 106 раз. Сопровождающий ток, протекающий после срабатывания аппарата, невелик (миллиамперы), так же как и невелика мощность, выделяемая в резисторах. Это позволяет отказаться от последовательного включения нескольких искровых промежутков и дает возможность присоединять ОПН непосредственно к защищаемому оборудованию, что значительно повышает надежность работы.

Высокая нелинейность резисторов ОПН (для области больших токов α≈0,04) позволяет значительно снизить перенапряжения и уменьшить габариты оборудования, особенно при напряжении 750 и 1150 кВ.Габаритные размеры и масса ОПН намного меньше, чем у обычных вентильных разрядников того же класса напряжения.

6.Длинно-искровые разрядники

Авторы идеи РДИ Подпоркин Георгий Викторович, доктор технических наук, профессор Политехнического Университета Санкт — Петербурга, Senior Member IEEE, и Сиваев Александр Дмитриевич, кандидат технических наук, начали первые эксперименты по разработке длинно — искровых разрядников ещё в 1989 году, а в 1992 было получено авторское свидетельство.

Рис.9. Схема длинно-искрового разрядника

 

Принцип работы разрядника основан на использовании эффекта скользящего разряда, который обеспечивает большую длину импульсного перекрытия по поверхности разрядника, и предотвращении за счет этого перехода импульсного перекрытия в силовую дугу тока промышленной частоты. Разрядный элемент РДИ, вдоль которого развивается скользящий разряд, имеет длину, в несколько раз превышающую длину защищаемого изолятора линии. Конструкция разрядника обеспечивает его более низкую импульсную электрическую прочность по сравнению с защищаемой изоляцией. Главной особенностью длинно-искрового разрядника является то, что вследствие большой длины импульсного грозового перекрытии вероятность установления дуги короткого замыкания сводится к нулю.

Существуют различные модификации РДИ, отличающиеся назначением и особенностями ВЛ, на которых они применяются.

Основное преимущество РДИ: разряд развивается вдоль аппарата по воздуху, а не внутри его. Это позволяет значительно увеличить срок эксплуатации изделий и повышает их надежность.

 

Разрядник длинно-искровой петлевого типа (РДИП)

РДИП-10 предназначен для защиты воздушных линий электропередачи напряжением 6-10 кВ трехфазного переменного тока с защищёнными и неизолированными проводами от индуктированных грозовых перенапряжений и их последствий и рассчитан для работы на открытом воздухе при температуре окружающего воздуха от минус 60 °C до плюс 50 °C в течение 30-и лет.

 

Разрядник длинно-искровой модульный (РДИМ)

РДИМ предназначен для защиты от прямых ударов молнии и индуктированных грозовых перенапряжений воздушных линий электропередачи (ВЛ) и подходов к подстанциям напряжением 6, 10 кВ трехфазного переменного тока с неизолированными и защищенными проводами.

РДИМ обладает наилучшими вольт-секундными характеристиками, именно поэтому его целесообразно применять для защиты участков линии, подверженных прямым ударам молнии, а также для защиты подходов к подстанциям ВЛ.

РДИМ состоит из двух отрезков кабеля с корделем, выполненным из резистивного материала. Отрезки кабеля сложены между собой так, что образуются три разрядных модуля 1, 2, 3.

 

 

 

 


Информация о работе Согласование характеристик разрядника и защищаемого оборудования