Автор работы: Пользователь скрыл имя, 01 Декабря 2013 в 18:29, курсовая работа
Быстрое развитие мироэлектроники как одной из самых обширных областей промышленности обусловлено следующими факторами:
1) Надежность - комплексное свойство, которое в зависимости от назначения изделия и условий его эксплуатации может включать безотказность, долговечность, ремонтопригодность и сохраняемость в отдельности или определенное сочетание этих свойств как изделий в целом так и его частей. Надежность работы ИМС обусловлена монолитностью их структуры, а также защищенностью интегральных структур от внешних воздействий с помощью герметичных корпусов, в которых, как правило, выпускаются серийные ИМС.
Введение 3
1. Описание схемы для разработки 3
2. Определение электрических параметров схемы 4
3. Технологические этапы изготовления ИМС 5
4. Последовательность расчета параметров биполярного транзистора 9
5. Последовательность расчета параметров интегральных резисторов 12
6. Последовательность расчета параметров МДП – конденсатора 18
7. Особенности топологии разрабатываемой ИМС 20
Выводы 20
Литература 20
Для создания заданного распределения примесей в глубине и на поверхности полупроводника проводится второй этап диффузии из ограниченного источника. Этот процесс называется разгонкой примеси.
Локальную диффузию проводят в открытые участки кремния по методу открытой трубы в потоке газа - носителя. Температурный интервал диффузии для кремния составляет 950 - 1300 °С. Кремниевые пластины размещают в высокотемпературной зоне диффузионной печи. Газ - носитель в кварцевой трубе при своем движении вытесняет воздух. Источники примеси, размещенные в низкотемпературной зоне, при испарении попадают в газ - носитель и в его составе проходят над поверхностью кремния.
Источники примеси, применяемые в производстве ИМС, могут быть твердыми: жидкими и газообразными. В качестве жидких источников используются хлорокись фосфора РОСlз и ВВrз. После установления температурного режима в рабочую зону печи поступает кислород, что способствует образованию на поверхности кремния фосфоро - и боросиликатного стекла. В дальнейшем диффузия проходит из слоя жидкого стекла Одновременно слой стекла защищает поверхность кремния от испарения и попадания посторонних частиц. Таким образом, в локальных участках кремния происходит диффузия легирующей примеси и создаются области полупроводника с определенным типом проводимости.
После первой фотолитографии проводится локальная диффузия донорной примеси с малым коэффициентом диффузии (Аs, Sb) и формируется скрытый высоколегированный слой n+ глубиной около 2 мкм.
Примесь с малым коэффициентом диффузии необходимо использовать, чтобы свести к минимуму изменение границ скрытого слоя при последующих высокотемпературных технологических операциях. После этого с поверхности полностью удаляется слой окисла и пластина очищается. На очищенной поверхности кремния выращивается эпитаксиальный слой n-типа толщиной 10-15 мкм с удельным сопротивлением 0,1 - 10 Ом*см.
5 - снятие окисла и подготовка поверхности перед процессом эпитакси-ального наращивания;
6 - формирование эпитаксиальной структуры;
Эпитаксия представляет
собой процесс роста
Эпитаксиальный процесс позволяет получать слои полупроводника однородные по концентрации примесей и с различным типом проводимости (как электронным, так и дырочным). Концентрация примесей в слое может быть выше и ниже, чем в подложке, что обеспечивает возможность получения высокоомных слоев на низкоомной подложке.
В производстве эпитаксиальные слои получают за счет реакции на поверхности подложки паров кремниевых соединений с использованием реакции восстановления SiCl4, SiВг4.
В реакционной камере на поверхности подложки в температурном диапазоне 1150 - 1270 °С протекает реакция
SiCl4+ 2Н2 <=> Si + 4 HС1, |
(3.1) |
в результате которой чистый кремний в виде твердого осадка достраивает решетку подложки, а летучее соединение удаляется из камеры.
Процесс эпитаксиального наращивания проводится в специальных установках, рабочим объемом в которых является кварцевая труба, а в качестве газа-носителя используются водород и азот. Водород перед поступлением в рабочий объем многократно очищается от кислорода, паров воды и других примесей. При установившейся рабочей температуре в поток газа носителя добавляется хлористый водород и производится предварительное травление подложки. После этого вводятся в поток газа SiCl4 и соответствующие легирующие примеси.
7 - окисление поверхности эпитаксиального слоя для создания защитной маски при разделительной диффузии;
8 - фотолитография для вскрытия окон под разделительную диффузию;
9 - проведение разделительной диффузии и создание изолированных карманов;
Разделительная диффузия проводится в две стадии: первая (загонка) -при температуре 1100-1150 °С, вторая (разгонка) - при температуре 1200-1250 °С. В качестве диффузанта используется бор. Разделительная диффузия осуществляется на всю глубину эпитаксиального слоя; при этом в подложке кремния формируются отдельные области полупроводника разделенные р-n переходами. В каждой изолированной области в результате последующих технологических операций формируется интегральный элемент.
10 -окисление;
11 - фотолитография для вскрытия окон под базовую диффузию;
12 - формирование базового слоя диффузией примеси р-типа.
Для проведения базовой диффузии процессы очистки поверхности, окисления и фотолитографии повторяются, после чего проводится двухстадийная диффузия бора: первая при температуре 950-1000 °С, вторая при температуре 1150-1200 °С.
13 -окисление;
14 - фотолитография для вскрытия окон под эмиттерную диффузию;
15 - формирование эмиттерного слоя диффузией примеси n-типа;
Эмиттерные области формируются после четвертой фотолитографии Эмиттерная диффузия проводится в одну стадию при температуре около 1050 °С. Одновременно с эмиттерами формируются области под контакты коллекторов и нижние обкладки МДП-конденсаторов. В качестве легирующей примеси используется фосфор.
16 – фотолитография для вскрытия окон для травления окисла под МДП-конденсаторы.
Данный этап необходим для создания тонкого окисла между верхней и нижней обкладками конденсатора. Он получается травлением пассивирующего слоя до нужной толщины.
17 – формирование тонкого окисла в местах создания МДП-конденсаторов.
18 - фотолитография для вскрытия контактных окон;
19 - напыление пленки алюминия.
Соединения элементов
ИМС создаются металлизацией. На
поверхность ИМС методом
20 - фотолитография для создания рисунка разводки и нанесение слоя защитного диэлектрика.
21 – фотолитография для вскрытия окон контактных площадок для последующего приваривания проводников.
4. Последовательность
расчета параметров
Исходные данные для расчета.
Максимальное напряжение на коллекторном переходе: Uкб = 1,5 В
Максимальный ток эмиттера: Іэ = 4,5 мА
Граничная частота fт = 500 МГц.
Дальнейший расчет проводится с помощью программы расчета параметров биполярных транзисторов, результаты расчета, представленные ниже, были получены с помощью данной программы.
Расчет выполняется
в следующей
1. По заданному максимально допустимому напряжению Uкб определяют пробивное напряжение Uкб0 , которое должно быть хотя бы на 20% больше Uкб и учитывает возможные колебания напряжения питания, т.е. Uкб0=1,2 Uкб, в нашем случае Uкб0=1,8 В. Пробивное напряжение Uпр коллекторного перехода выбираем с коэффициентом запаса 3, это учитывает возможность пробоя по поверхности и на закруглениях коллекторного перехода. В нашем случае Uпр = 5,4 В.
По графику зависимости Uпр (Nдк) [1] , где Nдк – концентрация доноров в коллекторе, находят Nдк . В программе расчета значение концентрации находится численными методами. В нашем случае Nдк = 5·1017 см-3. Данное значение слишком велико, т.к при таком значении возможно появление паразитного n-канала, поэтому уменьшим его до 1016 см-3.
По графику зависимости
подвижности электронов от их концентрации
[1] находят подвижность
2. Определяют характеристическую длину распределения акцепторов Lа и доноров Lд:
|
( 4.1) |
где хjк – глубина коллекторного перехода. В нашем случае La = 0,374 мкм; Lд = 0,0748 мкм.
3. Для расчета ширины
ОПЗ (области
|
( 4.2 ) |
где fт – тепловой потенциал, равный 0,0258 В при Т=300 К.; ni – концентрация собственных носителей заряда в кремнии (ni » 1010 см-3). В нашем случае fк = 0,6771 В.
Контактная разность потенциалов на эмиттерном переходе fэ рассчитывается аналогично fк. В нашем случае fэ = 0,1809 В.
4. Рассчитывают ширину
ОПЗ, распространяющуюся в
|
( 4.3 ) |
|
( 4.4 ) |
где , e0, eн – соответственно диэлектрическая постоянная и относительная диэлектрическая проницаемость полупроводниковой подложки.
В нашем случае Dхкб = 0,387 мкм, Dхкк = 0,6656 мкм.
5. Выбираем ширину технологической базы равной 1 мкм.
6. Определяем концентрацию
акцепторов на эмиттерном
Na(xjэ) = Nдкexp(Wб0/La) |
( 4.5 ) |
В нашем случае Na(xjэ) = 1,338·1017 см-3.
7. В результате высокой степени легирования эмиттера область объемного заряда на эмиттерном переходе в основном будет сосредоточена в базе. Приближенно можно считать, что Dхэб » Dхэ, где
|
( 4.6 ) |
В нашем случае Dхэ = 0,08858 мкм.
8. Расчитываем ширину активной базы:
Wба = Wб0 - Dхэ - Dхкб |
( 4.7 ) |
В нашем случае Wба = 0,4944 мкм.
Дальнейший расчет транзистора включает вычисление площади эмиттерного перехода,
9. Расчет
минимальной площади
|
( 4.8 ) |
где =const для Si (107 cм/с)
В нашем случае jкр = 2811 А/см2.
|
( 4.9 ) |
В нашем случае Sе = 160,1 мкм2.
10. Определим емкость коллекторного перехода на основе граничной частоты транзистора.
Из заданной частоты ft, найдем емкость коллекторного перехода Ск
|
( 4.10 ) |
В нашем случае Ск = 0,5 пФ
11. Найдем
площадь коллекторного
Рассчитаем площадь донной части коллекторного перехода:
|
( 4.11 ) |
где Vk=Vkp
В нашем случае Sб дон = 2734 мкм2.
Исходя из полученного значения площади найдем площадь боковой части
коллекторного перехода:
|
( 4.12 ) |
в нашем случае Sб.бок = 719 мкм2
5. Последовательность
расчета параметров
Параметры, которые определяют сопротивление интегрального резистора, можно разделить на две группы:
1) параметры полупроводникового слоя:
толщина W;
характер распределения примеси по глубине N(x);
зависимость подвижности носителей заряда от концентрации m(N);
2)топологические параметры :
длина резистора l;
ширина резистора b.
Первая группа параметров оптимизируется для получения наилучших результатов интегральных транзисторов. Именно для этого расчет транзисторов производится в первую очередь. Таким образом, задача расчета резистора сводится к выбору полупроводникового слоя, в котором будет создаваться резистор, и формы контактов и вычисления длины и ширины.
Воспроизводимость номинальных значений сопротивления обычно равна 15-20% и зависит от ширины резистора. Так, при возрастании ширины от 7 до 25 мкм точность воспроизведения номинала возрастает с ±15 до ±18%.
Информация о работе Микроэлектроника и функциональная электроника