Автор работы: Пользователь скрыл имя, 13 Апреля 2013 в 15:44, курсовая работа
Сделать электрические машины менее энергоёмкими, более дешёвыми с лучшими электрическими и механическими свойствами. Это задача, решаемая постоянно при проектировании машин новых серий. Проектирование электрических машин процесс творческий требующий знания ряда предметов общетехнического цикла, новинок производства в области создания новых конструкционных, изоляционных материалов, требований спроса рынка, условий применения в электроприводе. В настоящее время практикуется создание не индивидуальных машин, а серий электрических машин, на базе которых выполняются различные модификации.
Целью расчета является определение мощности и технических характеристик асинхронного двигателя, рассчитанного на базе вышедшего из строя асинхронного двигателя.
Введение
1. Техническое задание на курсовую работу
2. Расчёт геометрических размеров сердечника статора, ротора и расчет постоянных
3. Расчёт обмоток статора и ротора
4. Расчёт магнитной цепи
5. Активные и индуктивные сопротивления обмоток статора и ротора
6. Потери в стали, механические и добавочные потери
7. Расчет рабочих характеристик
8. Расчет пускового тока и момента
Список литературы
Fa = Ha · La = 206 · 0,37 = 76,22А,
где Ha – определяется по приложению В для выбранной марки стали и для индукции рассчитанной в п. 3.2.8.
Ha = 206А/м
La = π(Da – ha)/ 2p = 3,14(0,52 – 0,052)/ 2 · 2 = 0,37м
Магнитное напряжение ярма ротора.
FJ = HJ · LJ = 113 · 0,14 = 15,82А,
где HJ – определяется по приложению В для выбранной марки столи и для индукции рассчитанной в п. 3.2.8.
HJ = 113А/м
LJ = π(D2 – 2hz2 – hJ)/ 2p = 3,14(0,333 – 2 · 0,041 – 0,0756)/ 2 · 2 = 0,14м
Суммарное магнитное напряжение магнитной цепи.
Fц = Fδ + Fz1 + Fz2 + Fa + FJ = 1257,7 + 47,89 + 29,52 + 76,22 + 15,82 =
= 1427,15А
Коэффициент насыщения магнитной цепи двигателя.
kµ = Fц / Fδ = 1427,15 / 1257,7 = 1,13
kµ = (1,1 ÷ 1,6)
Расчет намагничивающего тока
Намагничивающий ток.
Относительное значение намагничивающего тока.
Iµ* = Iµ/ I1н = 16,65/ 91,44 = 0,18
5. Активные и индуктивные сопротивления обмоток статора и ротора
Сопротивление обмоток статора.
Среднее значение зубцового деления статора.
tср1 = π(D + hz1)/ Z1 = 3,14(0,335 + 0,041)/ 72 = 0,016м
Средняя ширина катушки (секции) статора.
bср1 = tср1 · y = 0,016 · 14 = 0,224м,
где y – шаг обмотки.
Средняя длина лобовой части (секции) статора.
lл1 = (1,16 + 0,14p)bср1 = (1,16 + 0,14 · 2) · 0,224 = 0,323м
Средняя длина витка обмотки статора.
lср1 = 2(l1 + lл1) = 2(0,151 + 0,323) = 0,948м
Длина вылета лобовой части обмотки статора.
lb1 = (0,12 + 0,15p) · bср1 + 0,01 = (0,12 + 0,15 · 2) · 0,224 + 0,01 = 0,104м
Длина проводников фазы обмотки.
L1 = lср1 · w1 = 0,948 · 72 = 68,26м
Активное сопротивление обмотки статора, приведенное к рабочей температуре 115ºС (для класса изоляции F).
ρ115 ,
где ρ115 = 1/41 (Ом/мм2) – удельное сопротивление меди при 115˚.
То же в относительных единицах.
r1* = r1 · I1н/U1н = 0,11 · 91,44/ 220 = 0,05,
где I1н и U1н – номинальные значения фазного тока и напряжения.
Индуктивное сопротивление
рассеяния обмотки статора
где kβ1, k'β1 – коэффициенты, учитывающие укорочение шага обмотки β, определяется по таблице 3.
Коэффициент проводимости
дифференциального рассеяния
λg1 = 0,9t1 · (q · kоб1)2 · kσ · kш1/δ · kδ = 0,9 · 0,0146 · (6 · 0,882)2 · 0,003
· 1,34/ 0,001 · 1,31 = 1,13
где kσ = ƒ(q) – коэффициент дифференциального рассеяния, определяется по таблице 4.
kш1 – коэффициент, учитывающий влияние открытия паза.
kш1 = (1 – 0,033) · b2ш1/t1 · δ = (1 – 0,033) · 0,00452/ 0,0146 · 0,001 = 1,34
Коэффициент проводимости рассеяния лобовых частей обмотки статора.
λл1 = 0,34(q/l1) · (lл1 – 0,064 · β · τ) = 0,34(6/0,151) · (0,323 – 0,64 · 0,75 ·
· 0,263) = 2,6
Коэффициент магнитной проводимости обмотки статора.
λ1 = λn1 + λg1 + λл1 = 1,74 + 1,13 + 2,6 = 5,47
Индуктивное сопротивление рассеяния фазы обмотки статора.
То же в относительных единицах.
x1* = x1 · I1н/U1н = 0,28 · 91,44/220 = 0,12
Индуктивное сопротивление взаимной индукции основного магнитного потока.
x12 = U1н/Iµ = 220/16.65 = 13,2Ом
Сопротивление обмотки ротора.
Активное сопротивление стержня.
rc = ρ115 · l2/qc = ,
где ρ115 = 1/20,5(Ом/мм2) удельное
сопротивление литой алюминиево
где Dкл.ср – средний диаметр кольца.
Dкл.ср = D2 – bкл = 0,333 – 0,042 = 0,291
Коэффициент приведения тока кольца к току стержня.
∆ = 2Sin (πp/Z2) = 2Sin (3,14 · 2/82) = 0,153
Сопротивление кольца, приведенное к стержню. rкл.пр = rкл /∆2 = 0,00000035/0,1532 = 1,5 · 10-5 Ом
Активное сопротивление обмотки ротора (стержня и двух колец).
r2 = rc + 2 · rкл.пр = 7,9 · 10-5 + 2 · 1,5 · 10-5 = 10,9 · 10-5 Ом
Активное сопротивление обмотки ротора, приведенное к обмотке статора.
То же в относительных единицах.
r'2* = r'2 · I1н/U1н = 0,064 · 91,44/220 = 0,027
Коэффициент магнитной проводимости пазового рассеяния ротора при овальном пазе.
Коэффициент проводимости
дифференциального рассеяния
λg2 = t2/(12 · δ ·kδ) = 0,0128/(12 · 0,001 · 1,31) = 0,81
Коэффициент проводимости лобового рассеяния ротора.
Коэффициент проводимости рассеяния обмотки ротора.
Индуктивное сопротивление обмотки ротора.
x2 = 7,9 · ƒ1 · l1 · λ2 · 10-6 = 7,9 · 50 · 0,151 · 4,96 · 10-6 = 0,000296Ом
Индуктивное приведенное сопротивление обмотки ротора.
То же в относительных единицах.
x'2* = x'2 · I1н/U1н = 0,17 · 91,44/220 = 0,07
6. Потери в стали. Механические и добавочные потери
Потери в стали (магнитные потери) и механические не зависят от нагрузки, поэтому они называются постоянными потерями и могут быть определены до расчета рабочих характеристик. Расчетная масса стали зубцов статора при трапецеидальных пазах.
Gz1 = 7,8 · Z1 · bz1 · hz1 · l1 · kc· 103 = 7,8 · 72 · 0,0067 · 0,041 · 0,151 · 0,97 · 103 = 22,6кг
Магнитные потери в зубцах статора для стали 2013. Pz1 = 4,4 ·B2z1 · Gz1 = 4,4 · 1,322 · 22,6 = 173,26Вт
Масса стали ярма статора. Ga1 = 7,8π(Da – hz1) · ha · l1 ·kc · 103 = 7,8 · 3,14(0,52 – 0,041) · 0,052 · 0,151 · 0,97 · 103 = 89,5кг
Магнитные потери в ярме статора. Pa1 = 4,4 · B2a · Ga1 = 4,4 · 0,992 · 89,5 = 385,96Вт
Суммарные магнитные потери в сердечнике статора, включающие добавочные потери встали.
Механические потери.
Вт
Дополнительные потери при номинальной нагрузке определяются по эмпирической формуле.
Pдоп.н = 0,004 · P' = 0,04 · 58539,9 = 2341,6Вт
7. Расчет рабочих характеристик
Под рабочими характеристиками асинхронного двигателя понимаются зависимости:
P1, I1, I'2, cos φ', η, M, n = ƒ(P2),
Где Р1, Р2 – потребляемая и полезная мощности двигателя.
В основу рабочих характеристик положена система уравнений токов и напряжений, полученных из Г- образной схемы замещения асинхронного двигателя с вынесенными на выходные зажимы намагничивающим контуром. Рис. 5.
Рисунок 5 – Г- образная схема замещения и векторная диаграмма.
Коэффициент приведения параметров двигателя к Г- образной схеме замещения.
С1 = 1 + (x1/x12) = 1 + (0,28/13,2) = 1,021
Активное сопротивление обмотки статора, приведенное к Г- образной схеме замещения.
r'1 = C1 · r1 = 1,021 · 0.11 = 0,112Ом
Индуктивное сопротивление короткого замыкания, приведенное к Г- образной схеме замещения.
x'к = С1 · x1 + C21 · x'2 = 1,021 · 0,28 + 1,0212 · 0,17 = 0,463Ом
Активная составляющая тока холостого хода.
Ioa = (Pcm + 3 · I2µ · r1)/3 · U1н = (689 + 3 · 16,652 · 0,11)/3 · 220 = 1,18А
Расчет рабочих характеристик проводим для 5 значений скольжения в диапазоне:
S = 0,005 ÷ 1,25Sн,
где Sн – ориентировочно номинальное скольжение принимаем равным:
Sн = r'2* = 0,027
Все необходимые для расчета характеристик данные формулы сведены в таблицу 5.
Таблица 5
№ п/п |
Расчетная формула |
Ед. изм. |
Скольжение | ||||
0,25Sн |
0,50Sн |
0,75Sн |
1,0Sн |
1,25Sн | |||
1 |
C21 · r'2/S |
Ом |
9,88 |
4,94 |
3,29 |
2,47 |
1,98 |
2 |
R = r'1 + C21 ·r'2/S |
Ом |
26,48 |
13,33 |
8,89 |
6,67 |
5,34 |
3 |
x = x'к |
0,463 |
0,463 |
0,463 |
0,463 |
0,463 | |
4 |
Z = √R2 + x2 |
Ом |
26,48 |
13,34 |
8,9 |
6,7 |
5,32 |
5 |
I"2 = U1н/Z |
А |
8,3 |
16,49 |
24,72 |
32,84 |
40,74 |
6 |
cosφ'2 = R/Z |
1 |
0,99 |
0,99 |
0,99 |
0,98 | |
7 |
sinφ'2 = x/Z |
0,02 |
0,034 |
0,05 |
0,069 |
0,087 | |
8 |
I1a = Ioa + I"2 · cosφ'2 |
А |
9,48 |
17,5 |
25,65 |
33,69 |
41,11 |
9 |
I1p = Iop + I"2 · sinφ'2 |
А |
16,82 |
17,21 |
17,89 |
18,91 |
20,19 |
10 |
I'2 = C1 · I"2 |
А |
8,47 |
16,83 |
25,24 |
33,53 |
41,6 |
11 |
I1 = √I21a + I21p |
А |
26,3 |
34,71 |
43,54 |
52,6 |
61,3 |
12 |
P1 = 3 · I"22· r'2 · 10-3 |
кВт |
9,27 |
11,55 |
16,87 |
22,23 |
27,13 |
13 |
Pэ1 = 3 · I21 · r1· 10-3 |
кВт |
0,23 |
0,4 |
0,63 |
0,93 |
1,26 |
14 |
Pэ2 = 3 · I"22 · r'2 · 10-3 |
кВт |
0,013 |
0,05 |
0,12 |
0,21 |
0,32 |
15 |
Pдоб = Pдоб.н(I1/I1н)2 |
кВт |
0,58 |
1,01 |
1,59 |
2,32 |
3,15 |
16 |
∑P = Pcm + Pмех + Pэ1 + Pэ2 + Pдоб |
кВт |
8,092 |
8,729 |
9,609 |
10,729 |
11,999 |
17 |
P2 = P1 - ∑P |
кВт |
1,178 |
2,821 |
7,261 |
11,501 |
15,131 |
18 |
η = 1 - ∑P/P1 |
0,18 |
0,24 |
0,43 |
0,52 |
0,56 | |
19 |
cosφ = I1a/I1 |
0,36 |
0,5 |
0,59 |
0,64 |
0,67 | |
20 |
Pэм = P1 – Pэ1 – Pсm |
кВт |
8,351 |
10,46 |
15,55 |
20,61 |
25,18 |
21 |
ω1 = 2π · n1/60 |
Рад/с |
314 |
314 |
314 |
314 |
314 |
22 |
M = Pэм · 103/ω1 |
Н.м |
26,6 |
33,3 |
49,5 |
65,6 |
80,2 |
23 |
n = n1 ·(1 – S) |
Об/мин |
2980 |
2960 |
2940 |
2919 |
2899 |
После расчета рабочих характеристик производим их построение
По номинальному току определяются номинальные параметры двигателя:
Р2н = 7,2кВт
Р1н = 17,5кВт
I'2н = 51,2А
сosφн = 0,61
ηн = 0,40
Мн = 50Н·м
nн = 2800об/мин
Sн = 0,018
Максимальный момент в относительных единицах.
Мmax* =Mmax / Mн =[(Sн /Sm) + (Sm/Sн)]/2 = [(0,018/0,20) + (0,20/0,018)]/2 =5,6
8. Расчет пускового тока и момента
При пуске в роторе АД имеют место два физических явления, оказывающих большое влияние на активное и индуктивное сопротивления, а следовательно, на пусковой ток и момент:
1) Эффект вытеснения тока в верхнюю часть паза, за счет которого расчетная высота паза и индуктивное сопротивление уменьшается, активное сопротивление увеличивается;
2) Эффект насыщения коронок зубцов потоками рассеяния, обусловленными большими пусковыми токами, за счет этого явления магнитные проводимости и индуктивные сопротивления уменьшаются.
Расчет активных и
индуктивных сопротивлений
Приведенная высота стержня для литой алюминиевой обмотки ротора при температуре 115˚С (класс изоляции F).
ξ = 63,61 · h21 = 63,61 · 0,040 = 2,54м
где h21 – высота стержня в пазу. Расчетный коэффициент увеличения активного сопротивления стержня φ в функции ξ. φ = 1,4. Глубина проникновения тока – расчетная высота стержня.
hr = h21 /(1 + φ) = 0,040/(1 + 1,4) = 0,017
Относительное увеличение
активного сопротивления
kr = qc/qr = 96/81,33 = 1,18
где qr – площадь сечения стержня, ограниченная высотой hr.
qc – площадь сечения всего стержня.
Коэффициент общего увеличения активного сопротивления фазы ротора за счет вытеснения тока.
Приведенное активное сопротивление ротора с учетом вытеснения тока.
Расчетный коэффициент уменьшения индуктивного сопротивления стержня φ' в функции ξ. φ' = 0,6. Расчетный коэффициент уменьшения индуктивного сопротивления фазы ротора за счет вытеснения тока.
kx = λn2ξ /λ2 = 4,14/4,96 = 0,83
где λ2ξ – коэффициент магнитной проводимости рассеяния ротора с учетом вытеснения тока.