Автор работы: Пользователь скрыл имя, 19 Марта 2014 в 06:44, контрольная работа
В каждой из сопоставляемых выборок должно быть одинаковое число наблюдений. Если число наблюдений неодинаково, то придется искусственно уравнивать выборки, утрачивая при этом часть полученных наблюдений. Например, если в двух выборках по 7 наблюдений, а в третьей - И, то 4 из них необходимо отсеять. Для этого карточки с индивидуальными значениями переворачиваются лицевой стороной вниз и перемешиваются, а затем из них случайным образом извлекается 7 карточек. Оставшиеся 4 карточки с индивидуальными значениями не включаются в дальнейшее рассмотрение и в подсчет критерия S. Ясно, что при таком подходе часть информации утрачивается, и общая картина может быть искажена. Если исследователь хочет избежать этого, ему следует воспользоваться критерием Н, позволяющим выявить различия между тремя и более выборками без указания на направление этих различий.
Описание S критерий тенденций Джонкира. 3стр
Решение задачи 8стр
Библиографический список 9стр
Содержание
Библиографический список
Описание этого критерия дается с использованием руководства J.Greene, M.D'Olivera (1982). Он описан также у М. Холлендера, Д.А. Вулфа (1983).
Назначение критерия S
Критерий S предназначен для выявления тенденций изменения признака при переходе от выборки к выборке при сопоставлении трех и более выборок.
Описание критерия S
Критерий S позволяет нам упорядочить обследованные выборки по какому-либо признаку, например, по креативности, фрустрационной толерантности, гибкости и т.п. Мы сможем утверждать, что на первом месте по выраженности исследуемого признака стоит выборка, скажем, Б, на втором - А, на третьем - В и т.д. Интерпретация полученных результатов будет зависеть от того, по какому принципу были образованы исследуемые выборки. Здесь возможны два принципиально отличных варианта.
1) Если обследованы выборки, различающиеся по качественным признакам (профессии, национальности, месту работы и т. п.), то с помощью критерия S мы сможем упорядочить выборки по количественно измеряемому признаку (креативности, фрустрационной толерантности, гибкости и т.п.).
2) Если обследованы выборки, различающиеся или специально сгруппированные по количественному признаку (возрасту, стажу работы, социометрическому статусу и др.), то, упорядочивая их теперь уже по другому количественному признаку, мы фактически устанавливаем меру связи между двумя количественными признаками. Например, мы можем показать с помощью критерия S, что при переходе от младшей возрастной группы к старшей фрустрационная толерантность возрастает, а гибкость, наоборот, снижается. Меру связи между количественно измеренными переменными можно установить с помощью вычисления коэффициента ранговой корреляции или линейной корреляции. Однако критерий тенденций S имеет следующие преимущества перед коэффициентами корреляции:
а) критерий тенденций S более прост в подсчете;
б) он применим и в тех случаях, когда один из признаков варьирует в узком диапазоне, например, принимает всего 3 или 4 значения, в то время как при подсчете ранговой корреляции в этом случае мы получаем огрубленный результат, нуждающийся в поправке на одинаковые ранги.
Критерий S основан на способе расчета, близком к принципу критерия Q Розенбаума. Все выборки располагаются в порядке возрастания исследуемого признака, при этом выборку, в которой значения в общем ниже, мы помещаем слева, выборку, в которой значения выше, правее, и так далее в порядке возрастания значений. Таким образом, все выборки выстраиваются слева направо в порядке возрастания значений исследуемого признака. При упорядочивании выборок мы можем опираться на средние значения в каждой выборке или даже на суммы всех значений в каждой выборке, потому что в каждой выборке должно быть одинаковое 1 количество значений. В противном случае критерий S неприменим j (подробнее об этом см. в разделе "Ограничения критерия S").
Для каждого индивидуального значения подсчитывается количество значений справа, превышающих его по величине. Если тенденция возрастания признака слева направо существенна, то большая часть значений справа должна быть выше. Критерий S позволяет определить, преобладают ли справа более высокие значения или нет. Статистика S отражает степень этого преобладания. Чем выше эмпирическое значение S, тем тенденция возрастания признака является более существенной.
Следовательно, если Sэмп равняется критическому значению или превышает его, нулевая гипотеза может быть отвергнута.
Гипотезы
Н0: Тенденция возрастания значений признака при переходе от выборки к выборке является случайной.
H1: Тенденция возрастания
значений признака при
Графическое представление критерия
Фактически критерий S позволяет определить, достаточно ли велика суммарная зона неперекрещивающихся значений в сопоставляемых (выборках: действительно ли в первом ряду значения в общем ниже, чем 1в последующих, во втором - ниже, чем в оставшихся справа последующих и т. д. Графически это представлено на Рис. 2.7.
На Рис. 2.7(а) у сопоставляемых рядов значений есть непере* 1крещивающиеся зоны, но их суммарная площадь может оказаться 1 слишком небольшой, чтобы признать тенденцию возрастания признака существенной.
На рис. 2.7(6) сумма неперекрещивающихся зон, по-видимому, достаточно велика, чтобы тенденция возрастания признака была признана достоверной. Точно определить это мы сможем лишь с помощью критерия S.
Ограничения критерия S
1. В каждой из сопоставляемых
выборок должно быть
2. Нижний порог: не менее 3 выборок и не менее 2 наблюдений в каждой выборке. Верхний порог в существующих таблицах: не более 6 выборок и не более 10 наблюдений в каждой выборке (см. Табл. III Приложения 1 для определения критических значений S в учебнике Е.Сидоренко «Методы математической обработки в психологии»). При большем количестве выборок или наблюдений в них придется пользоваться критерием Н Крускала-Уоллиса.
АЛГОРИТМ 6 Подсчет критерия S Джонкира
1. Перенести все показатели испытуемых на индивидуальные карточки.
2. Если количества испытуемых в группах не совпадают, уравнять группы, ориентируясь на количество наблюдений в меньшей из групп. Например, если в меньшей из групп п=3, то из остальных групп необходимо случайным образом извлечь по три карточки, а остальные отсеять. Если во всех группах одинаковое количество испытуемых (n<10), можно сразу переходить к п. 3.
3. Разложить карточки
первой группы в порядке
4. Начиная с крайнего левого столбца подсчитать для каждого индивидуального значения количество превышающих его значений во всех столбцах справа (Si). Полученные суммы записать в скобках рядом с каждым индивидуальным значением.
5. Подсчитать суммы показателей в скобках по столбцам.
6. Подсчитать общую сумму, просуммировав все суммы по столбцам. Эту общую сумму обозначить как А.
7. Подсчитать максимально
возможное количество
где с - количество столбцов (сопоставляемых групп);
n - количество наблюдений в каждом столбце (группе).
8. Определить эмпирическое значение S по формуле:
S=2·A-B
9. Определить критические значения S по Табл. III Приложения 1 (учебника Е.Сидоренко «Методы математической обработки в психологии») для данного количества групп (с) и количества испытуемых в каждой группе (n). Если эмпирическое значение S превышает или по крайней мере равняется критическому значению, H0 отвергается.
Библиографический список
1. Сидоренко Е.В. Методы математической обработки в психологии/ Е.В. Сидоренко СПб.: ООО «Речь», 2003. – 350 с., ил.