Автор работы: Пользователь скрыл имя, 14 Февраля 2013 в 00:30, курсовая работа
Цель курсовой работы рассмотреть закрытое хеширование, основные виды хеш-функций и некоторые их модификации, проблемы удаления элементов из хеш-таблицы, а также некоторые варианты применения хеширования.
Объектом исследования являются алгоритмы хэширования.
Предметом является программная реализация алгоритма хэширования.
Для достижения цели исследования поставим перед собой следующие задачи:
-рассмотреть закрытое хэширование;
-охарактеризовать основные понятия хэширования;
-разработать программную реализацию алгоритма закрытого хэширования.
Коллизии осложняют использование хеш-таблиц, так как нарушают однозначность соответствия между хеш-кодами и данными. Тем не менее, существуют способы преодоления возникающих сложностей:
Метод цепочек. Технология сцепления элементов состоит в том, что элементы множества, которым соответствует одно и то же хеш-значение, связываются в цепочку-список. В позиции номер i хранится указатель на голову списка тех элементов, у которых хеш-значение ключа равно i ; если таких элементов в множестве нет, в позиции i записан NULL. На рисунке 1 демонстрируется реализация метода цепочек при разрешении коллизий. На ключ 002 претендуют два значения, которые организуются в линейный список.
Рис. 1. Разрешение коллизий при помощи цепочек
Каждая ячейка массива является указателем на связный список (цепочку) пар ключ-значение, соответствующих одному и тому же хеш-значению ключа. Коллизии просто приводят к тому, что появляются цепочки длиной более одного элемента (1: 84)
Операции поиска или удаления данных требуют просмотра всех элементов соответствующей ему цепочки, чтобы найти в ней элемент с заданным ключом. Для добавления данных нужно добавить элемент в конец или начало соответствующего списка, и, в случае если коэффициент заполнения станет слишком велик, увеличить размер массива и перестроить таблицу.
При предположении, что каждый элемент может попасть в любую позицию таблицы с равной вероятностью и независимо от того, куда попал любой другой элемент, среднее время работы операции поиска элемента составляет O(1+k), где k – коэффициент заполнения таблицы.
Метод открытой адресации. В отличие от хеширования с цепочками, при открытой адресации никаких списков нет, а все записи хранятся в самой хеш-таблице. Каждая ячейка таблицы содержит либо элемент динамического множества, либоNULL.
В этом случае, если ячейка
с вычисленным индексом занята, то
можно просто просматривать следующие
записи таблицы по порядку до тех
пор, пока не будет найден ключ K или пустая позиция в таблице. Для вычисления
шага можно также применить формулу, которая
и определит способ изменения шага. На рис. 2. разрешение коллизий осущест
Рис. 2. Разрешение коллизий при помощи открытой адресации
При любом методе разрешения коллизий необходимо ограничить длину поиска элемента. Если для поиска элемента необходимо более 3 – 4 сравнений, то эффективность использования такой хеш-таблицы пропадает и ее следует реструктуризировать (т.е. найти другую хеш-функцию), чтобы минимизировать количество сравнений для поиска элемента
Для успешной работы алгоритмов поиска, последовательность проб должна быть такой, чтобы все ячейки хеш-таблицы оказались просмотренными ровно по одному разу.
Удаление элементов в такой схеме несколько затруднено. Обычно поступают так: заводят логический флаг для каждой ячейки, помечающий, удален ли элемент в ней или нет. Тогда удаление элемента состоит в установке этого флага для соответствующей ячейки хеш-таблицы, но при этом необходимо модифицировать процедуру поиска существующего элемента так, чтобы она считала удаленные ячейки занятыми, а процедуру добавления – чтобы она их считала свободными и сбрасывала значение флага при добавлении (2: 75)
Возможно, одним из самых очевидных и простых способов хеширования является метод середины квадрата, когда ключ возводится в квадрат и берется несколько цифр в середине. Здесь и далее предполагается, что ключ сначала приводится к целому числу, для совершения с ним арифметических операций. Однако такой способ хорошо работает до момента, когда нет большого количества нолей слева или справа. Многочисленные тесты показали хорошую работу двух основных типов хеширования, один из которых основан на делении, а другой на умножении. Впрочем, это не единственные методы, которые существуют, более того, они не всегда являются оптимальными.
Существует несколько типов функций хеширования, каждая из которых имеет свои преимущества и недостатки и основана на представлении данных. Приведем обзор и анализ некоторых наиболее простых из применяемых на практике хеш-функций.
Простейшей организацией таблицы, обеспечивающей идеально быстрый поиск, является таблица прямого доступа. В такой таблице ключ является адресом записи в таблице или может быть преобразован в адрес, причем таким образом, что никакие два разных ключа не преобразуются в один и тот же адрес. При создании таблицы выделяется память для хранения всей таблицы и заполняется пустыми записями. Затем записи вносятся в таблицу – каждая на свое место, определяемое ее ключом. При поиске ключ используется как адрес и по этому адресу выбирается запись. Если выбранная запись пустая, то записи с таким ключом вообще нет в таблице. Таблицы прямого доступа очень эффективны в использовании, но, к сожалению, область их применения весьма ограничена (9: 38).
Назовем пространством ключей множество всех теоретически возможных значений ключей записи. Назовем пространством записей множество тех ячеек памяти, которые выделяются для хранения таблицы. Таблицы прямого доступа применимы только для таких задач, в которых размер пространства записей может быть равен размеру пространства ключей. В большинстве реальных задач размер пространства записей много меньше, чем пространства ключей. Так, если в качестве ключа используется фамилия, то, даже ограничив длину ключа десятью символами кириллицы, получаем 3310 возможных значений ключей. Даже если ресурсы вычислительной системы и позволят выделить пространство записей такого размера, то значительная часть этого пространства будет заполнена пустыми записями, так как в каждом конкретном заполнении таблицы фактическое множество ключей не будет полностью покрывать пространство ключей.
В целях экономии памяти можно назначать размер пространства записей равным размеру фактического множества записей или превосходящим его незначительно. В этом случае необходимо иметь некоторую функцию, обеспечивающую отображение точки из пространства ключей в точку в пространстве записей, то есть, преобразование ключа в адрес записи: a=h(k), где a – адрес, k – ключ.
Идеальной хеш-функцией являетс
Простейшей хеш-функцией являет
Если ключей меньше, чем элементов массива, то в качестве хеш-функции можно использовать деление по модулю, то есть остаток от деления целочисленного ключа Key на размерность массива HashTableSize, то есть:
Key % HashTableSize
Данная функция очень проста, хотя и не относится к хорошим. Вообще, можно использовать любую размерность массива, но она должна быть такой, чтобы минимизировать число коллизий. Для этого в качестве размерности лучше использовать простое число. В большинстве случаев подобный выбор вполне удовлетворителен. Для символьной строки ключом может являться остаток от деления, например, суммы кодов символов строки на HashTableSize.
На практике, метод
деления – самый
Следующей хеш-функцией являетс
Еще одной хеш-функцией можно назвать функцию свертки. Цифровое представление ключа разбивается на части, каждая из которых имеет длину, равную длине требуемого адреса. Над частями производятся определенные арифметические или поразрядные логические операции, результат которых интерпретируется как адрес. Например, для сравнительно небольших таблиц с ключами – символьными строками неплохие результаты дает функция хеширования, в которой адрес записи получается в результате сложения кодов символов, составляющих строку-ключ.
В качестве хеш-функции также применяют функцию преобразования системы счисления. Ключ, записанный как число в некоторой системе счисления P, интерпретируется как число в системе счисления Q>P. Обычно выбирают Q=P+1. Это число переводится из системы Q обратно в систему P, приводится к размеру пространства записей и интерпретируется как адрес (7: 147).
При закрытом (внутреннем) хешировании в хеш-таблице хранятся непосредственно
сами элементы, а не заголовки списков
элементов. Поэтому в каждой записи (сегменте)
может храниться только один элемент.
При закрытом хешировании применяет
Пример: Предположим, что В=8 и ключи a, b,c, d имеют хеш значения h(a)=3, h(b)=0, h(c)=4, h(d)=3. Применим простую методику, которая называется линейным хешированием. При линейном хешировании hi(x)=(h(x)+i) mod B. Например, если мы хотим вставить элемент d, а сегмент 3 уже занят, то нужно проверить на занятость сегменты 4,5,6,7,0,1,2 (именно в таком порядке).
0 |
b |
1 |
|
2 |
|
3 |
a |
4 |
c |
5 |
d |
6 |
|
7 |
Рис. 3. Частично заполненная хеш таблица.
Мы предполагаем что в начале вся хеш таблица пуста, т.е. в каждый сегмент помещено специальное значение Empty (пустой), которое не совпадает ни с одним элементом словаря. Теперь последовательно вставим элементы a,b,c,d в пустую таблицу: элемент a попадает всегмент 3, элемент b в сегмент 0, а элемент с в сегмент 4. Для элемента d H(d)=3, но сегмент 3 уже занят. Применяем функцию h1 : h1 (d) = 4, но сегмент 4 так же занят. Применяем функцию h2 : h2 (d) = 5, сегмент 5 свободен, туда и помещаем элемент d. Результат заполнения хеш таблицы показан на рисунке 3.
При поиске элемента х необходимо просмотреть все местоположения h(x), h1(х), h2(х) ,..., пока не будет найден х или пока не встретится пустой сегмент. Чтобы объяснить, почему можно остановить поиск при достижении пустого сегмента, предположим, что в хеш-таблице не допускается удаление элементов. Пусть h3(х) – первый пустой сегмент. В такой ситуации невозможно нахождение элементах в сегментах h4(х),h5(х) и далее, так как при вставке элемент х вставляется в первый пустой сегмент, следовательно, он находится где-то до сегмента h3(х). Но если в хеш-таблице допускается удаление элементов, то при достижении пустого сегмента, не найдя элемента х, нельзя быть уверенным в том, что его вообще нет в таблице, так как сегмент может стать пустым уже после вставки элемента х. Поэтому, чтобы увеличить эффективность данной реализации, необходимо в сегмент, который освободился после операции удаления элемента, поместить специальную константу, которую назовем, например, DEL. В качестве альтернативы специальной константе можно использовать дополнительное поле таблицы, которое показывает состояние элемента. Важно различать константы DEL и NULL – последняя находится в сегментах, которые никогда не содержали элементов. При таком подходе выполнение поиска элемента не требует просмотра всей хеш-таблицы. Кроме того, при вставке элементов сегменты, помеченные константой DEL, можно трактовать как свободные, таким образом, пространство, освобожденное после удаления элементов, можно рано или поздно использовать повторно. Но если невозможно непосредственно сразу после удаления элементов пометить освободившиеся сегменты, то следует предпочесть закрытому хешированию схему открытого хеширования.
ГЛАВА 2. ПРАКТИЧЕКАЯ РЕАЛИЗАЦИЯ АЛГОРИТМА ЗАКРЫТОГО ХЭШИРОВАНИЯ
В этом разделе будут рассмотрены более общие методы хеширования, более мощные и более гибкие.
program setHash;
uses
crt;
Информация о работе Программная реализация алгоритма закрытого хэширования