Автор работы: Пользователь скрыл имя, 29 Октября 2014 в 20:01, реферат
1. Формулировка задачи.
2. Геометрическая интерпретация задачи линейного программирования.
2. Графический метод решения задачи линейного программирования.
1. Область применения.
2. Примеры задач, решаемых графическим методом.
3. Обобщение графического метода решения задач линейного программирования.
Таким образом, для того, чтобы обеспечить минимум затрат (26 коп. в день), необходимо дневной рацион составить из 2 кг корма 1 и 3 кг корма 2.
Вообще, с помощью графического метода может быть ре-шена задача линейного программирования, система ограниче-ний которой содержит n неизвестных и m линейно независи-мых уравнений, если N и M связаны соотношением N – M = 2.
Действительно, пусть поставлена задача линейного программирования.
Найти минимальное значение линейной функции Z = С1х1+С2х2+... +СNxN при ограничениях
a11x1 + a22x2 + ... + a1NХN = b1
(2.3)a21x1 + a22x2 + ... + a2NХN = b2
. . . . . . . . . . . . . . .
aМ1x1 + aМ2x2 + ... + aМNХN = bМ
xj 0 (j = 1, 2, ..., N)
где все уравнения линейно независимы и выполняется cоотношение N - M = 2.
Используя метод Жордана-Гаусса, производим M исключений, в результате которых базисными неизвестными оказались, например, M первых неизвестных х1, х2, ..., хM, а свободными - два последних: хМ+1, и хN, т. е. система ограничений приняла вид
x1 + a1,М+1xМ+1 + a1NХN = b1
(2.4)x2 + a2,М+1xМ+1 + a2NХN = b2
. . . . . . . . . . . .
xМ + aМ, М+1x2 + aМNХN = bМ
xj 0 (j = 1, 2, ..., N)
С помощью уравнений преобразованной системы выражаем линейную функцию только через свободные неизвестные и, учитывая, что все базисные неизвестные - неотрицательные: хj 0 (j = 1, 2, ..., M), отбрасываем их, переходя к системе ограничений, выраженных в виде неравенств. Таким образом, окончательно получаем следующую задачу.
Найти минимальное значение линейной функции Z = СМ+1хМ+1+СNxN при ограничениях
a1,М+1xМ+1 + a1NХN b1
a2,М+1xМ+1 + a2NХN b2
. . . . . . . . . .
aМ,М+1xМ+1 + aМNХN bМ
xМ+1 0, хN 0
Преобразованная задача содержит два неизвестных; решая ее графическим методом, находим оптимальные значения xМ+1 и хN, а затем, подставляя их в (2.4), находим оптимальные значения х1, х2, ..., хM.
Пример.
Графическим методом найти оптимальный план задачи ли-нейного программирования, при котором линейная функция Z = 2х1 - х2 + х3 - 3х4 + 4х5 достигает максимального значения при ограничениях
х1 - х2 + 3х3 - 18х4 + 2х5 = -4
2х1 - х2 + 4х3 - 21х4 + 4х5 = 2
3х1 - 2х2 + 8х3 - 43х4 + 11х5 = 38
xj 0 (j = 1, 2, ..., 5)
Решение.
Используя метод Жордана-Гаусса, произведем три полных исключения неизвестных х1, х2, х3. В результате приходим к системе
х1 + х4 - 3х5 = 6
х2 + 7х4 + 10х5 = 70
х3 - 4х4 + 5х5 = 20
Откуда x1 = 6 – х4 + 3x5, х2 = 70 – 7х4-10х5, х3 = 20 + 4х4 -5х5.
Подставляя эти значения в функцию и отбрасывая в системе базисные переменные, получаем задачу, выраженную только через свободные переменные х4 и х5: найти максимальное значение линейной функции Z = 6х4 + 15х5 – 38 при ограничениях
х4 - х5 6
7х4 + 10х5 70
- 4х4 + 5х5 20
х4 0, х5 0.
Построим многогранник решений и линейную функцию в системе координат х4Ох5(рис. 2.5). Из рис. 2.5 заключаем, что линейная функция принимает максимальное значение в угловой точке В, которая лежит на пересечении прямых 2 и 3. В результате решения системы
7х4 + 10х5 = 70
4х4 + 5х5 = 20
находим: х4 = 2, х5 = 28/5. Максимальное значение функции Zmax = -38 + 12 + 84 = 58.
Для отыскания оптимального плана исходной задачи подставляем найденные значения х4 и х5. Окончательно получаем: х1 = 104/5, х2 = 0, х3 = 0, х4 = 2, х5 = 28/5.