Автор работы: Пользователь скрыл имя, 26 Ноября 2014 в 09:05, курсовая работа
Экспертные системы возникли как значительный практический результат в применении и развитии методов искусственного интеллекта - совокупности научных дисциплин, изучающих методы решения задач интеллектуального (творческого) характера с использованием ЭВМ.
Область искусственного интеллекта имеет более чем сорокалетнюю историю развития. С самого начала в ней рассматривался ряд весьма сложных задач, которые, наряду с другими, и до сих пор являются предметом исследований: автоматические доказательства теорем, машинный перевод, распознавание изображений и анализ сцен, планирование действий роботов, алгоритмы и стратегии игр.
Процедурное программирование наиболее широко распространено среди существующих сегодня языков программирования (например, Си). Здесь явно выделяют два вида различных сущностей: процедуры, являющиеся тем, что задает поведение (функционирование) программы и выполняющие активную роль; данные, являющиеся тем, что обрабатывается способом, предписанным процедурами, и выполняющие пассивную роль. Способность составлять процедуры из команд (операторов) и вызывать их - ключ функционирования, использующего данную парадигму. Особенностью её являются боковые эффекты, возникающие в тех случаях, когда различные процедуры, использующие общие данные, независимо их изменяют.
Парадигма объектного программирования в отличие от процедурной не разделяет программу на процедуры и данные. Здесь программа организуется вокруг сущностей (объектов), которые включают локальные процедуры (методы) и локальные данные (переменные). Поведение (функционирование) в этой парадигме организуется путем пересылки сообщений между объектами. Объект, получив сообщение, осуществляет его локальную интерпретацию, основываясь на локальных процедурах и данных. Объектная парадигма удобна в тех приложениях, где взаимодействие сущностей сведено к унифицированным протоколам. Важным свойством языков, использующих данную парадигму, является сеть наследований, которая существенно упрощает определение новых объектов, почти подобных известным.
В обеих рассмотренных парадигмах активная роль в организации поведения отводится процедурам, а не данным. Причём процедура активизируется либо её вызовом, либо посылкой ей сообщения. Подобные способы задания поведения удобны для описания детерминированной последовательности действий либо одного процесса, либо нескольких, но строго взаимосвязанных процессов.
В программировании, ориентированном на данные, активную роль играют данные, а не процедуры. Здесь со структурами активных данных связывают некоторые процедуры (действия), которые активизируются тогда, когда осуществляется доступ к этим данным. Описанный механизм в некотором смысле обратный механизму посылки сообщений. Действительно, сообщение является явным способом указать объекту, какие действия следует выполнять (эти действия в качестве бокового эффекта могут изменить значения некоторых данных (племенных), а отнесение данных к активным является явным способом указания на контроль за доступом к ним, при этом в качестве бокового эффекта может быть послано сообщение процедуре. Программирование, ориентированное на данные, позволяет организовать поведение малозависимых процессов, что трудно реализовать в процедурной и объектной парадигмах. Малая зависимость процессов означает, что они могут рассматриваться и программироваться отдельно. Однако, при использований парадигмы, управляемой данными, эти независимо запрограммированные процессы могут взаимодействовать между собой без их изменения, то есть без перепрограммирования.
В программировании, ориентированном на правила, поведение определяется множеством правил вида условие - действие. Условие задаёт образ данных, при возникновении которого действие правила может быть выполнено. Правила в данной парадигме играют такую же роль, как и подпрограммы в процедурной парадигме. Однако, если в процедурной парадигме поведение задаётся детерминированной последовательностью процедур, не зависящей (для широкого класса обрабатываемых данных) от значений этих данных, то в парадигме, ориентированной на правила, поведение (последовательность действий) задаётся не заранее предписанной последовательностью правил, а формируется на основе тех данных и их значений, которые в текущий момент обрабатываются программой (системой). Формирование поведения осуществляется по следующей схеме. Условия правил сопоставляются с текущими данными, и те правила, условия которых удовлетворяются значениями текущих данных, становятся претендентами на выполнение. Затем по определённому критерию осуществляется выбор одного правила среди претендентов и выполнение его (то есть выполнение действия, указанного в правой части правила). Если система (устройство) допускает параллельную обработку, то все правила-претенденты могут выполняться одновременно. Таким образом, правила выполняются в порядке, предписываемом теми образцами данных, которые, как правило, малозависимы друг от друга. Итак, подход, ориентированный на правила, удобен для описания поведения, гибко и разнообразно реагирующего на большое многообразие состояний данных. Основные свойства определяют особенности ИС с точки зрения реализации компонентов экспертных систем. Среда функционирования определяет тип ЭВМ, на которой реализовано ИС, тип операционной системы, в среде которой ИС работает, и используемый язык программирования.
2.3 Организация знаний в экспертных системах
Для специалистов в области искусственного интеллекта термин знания означает информацию, которая необходима программе, чтобы она вела себя «интеллектуально». Эта информация принимает форму фактов или правил.
Факты и правила в экспертной системе не всегда либо истинны, либо ложны; иногда существует некоторая степень неуверенности в достоверности факта или точности правила. Если это сомнение выражено явно, то оно называется «коэффициентом уверенности».
Многие правила экспертной системы являются эвристиками, то есть эмпирическими правилами или упрощениями, которые эффективно ограничивают поиск решения. Экспертная система использует эвристики, потому что задачи, которые она решает, будь то поиск новых месторождений или согласование исков, как правило, трудны и не до конца понятны. Эти задачи не поддаются строгому математическому анализу или алгоритмическому решению. Алгоритмический метод гарантирует корректное или оптимальное решение задачи, тогда как эвристический метод даёт приемлемое решение в большинстве случаев.
Алгоритм обеспечивает полную гарантию предотвращения захвата самолёта, потому что в принципе полностью исключает возможность проникновения оружия на борт самолёта. К сожалению, он требует слишком много времени, слишком дорог и, что ещё важнее; слишком непопулярен, чтобы иметь какую-либо практическую ценность. Приведенный эвристический метод также может предотвратить большинство попыток захвата самолётов, но не гарантирует, что они вообще не возникнут. Использование эвристических правил делает поиск решения намного более лёгким и более практичным.
Знания в экспертной системе организованы таким образом, чтобы знания о предметной области отделить от других типов знаний системы, таких, как общие знания о том, как решать задачи, или знания о том, как взаимодействовать с пользователем, например как печатать текст на терминале пользователя или как изменить текст в соответствии с командами пользователя. Выделенные знания о предметной области называются базой знаний, тогда как общие знания о нахождении решений задач называются механизмом вывода.
Программа, которая работает со знаниями, организованными подобным образом, называется системой, основанной на знаниях.
Рисунок 2 - Экспертные системы как системы, основанные на знаниях.
Как показано на рисунке 3 , в сущности все экспертные системы являются системами, основанными на знаниях, но не наоборот. Программу искусственного интеллекта для игры в «крестики и нолики» нельзя будет считать экспертной системой, даже если в ней знания о предметной области отделить от остальной программы.
База знаний экспертной системы содержит факты (данные) и правила (или другие представления знаний), использующие эти факты как основу для принятия решений. Механизм вывода содержит интерпретатор, определяющий, каким образом применять правила для вывода новых знаний, и диспетчер, устанавливающий порядок применения этих правил. Такая структура экспертной системы показана на рисунке 4.
Экспертная система
Рисунок 3 - Состав экспертной системы.
Выделение знаний о предметной области облегчает инженеру по знаниям разработку процедур для манипулирования ими. Каким образом система использует свои знания, имеет первостепенное значение, поскольку экспертная система должна иметь и адекватные знания, и средства эффективно использовать знания, чтобы её можно было считать умелой в каком-либо виде деятельности. Следовательно, для того, чтобы быть умелой, экспертная система должна иметь базу знаний, содержащую высококачественные знания о предметной области, а её механизм вывода должен содержать знания о том, как эффективно использовать знания о предметной области.
Концепция механизма вывода экспертной системы часто вызывает некоторое недоумение среди начинающих разработчиков. Обычно ясно, как знания предметной области могут быть записаны в виде фактов и правил, но далеко не ясно, каким образом конструировать и использовать так называемый «механизм вывода». Это недоумение происходит от отсутствия простого и общего метода организации логического вывода. Его структура зависит и от специфики предметной области и от того, как знания структурированы и организованы в экспертной системе. Многие языки высокого уровня, предназначенные для построения экспертных систем, например ЕМYСIМ, имеют механизм вывода, в некотором смысле встроенный в язык как его часть.
Другим примером может служить язык программирования Пролог со встроенным в него механизмом логического вывода, который может быть непосредственно использован при создании простых экспертных систем.
Языки более низкого уровня, например LISP, требуют, чтобы создатель экспертной системы спроектировал и реализовал механизм вывода.
Оба подхода имеют свои достоинства и недостатки. Язык высокого уровня со встроенным механизмом вывода облегчает работу создателя экспертной системы. В то же время у него, понятно, меньше возможностей определять способы организации знаний и доступа к ним, и ему следует очень внимательно рассмотреть вопрос о том, годится или нет на самом деле предлагаемая схема управления процессом поиска решения для данной предметной области. Использование языка более низкого уровня без механизма вывода требует больших усилий на разработку, но позволяет разработать нужные программные блоки, которые разработчик может встроить в схему управления процессом решения, который будет адекватен данной предметной области.
Что касается механизма вывода, то здесь дело не ограничивается выбором «всё или ничего». Так, некоторые инструменты построения экспертных систем имеют набор встроенных механизмов вывода, но позволяют разработчику модифицировать или переопределять их для большего соответствия с предметной областью.
Существует много стандартных способов представления знаний, и при построении экспертных систем « может быть использован любой из них, сам по себе или в сочетании с другими. Каждый способ позволяет получить программу с некоторыми преимуществами - делает её более эффективной, облегчает её понимание и модификацию. В современных экспертных системах чаще всего используются три самых важных метода представления знаний: правила (самый популярный), семантические сети и фреймы.
Представление знаний, основанное на правилах, построено на использовании выражений вида ЕСЛИ (условие) - ТО (действие). Например:
(1) Если пациент был по профессии
изолировщиком до 1988 г., то пациент
непосредственно работал с
Сопоставление частей ЕСЛИ правил с фактами может породить так называемую цепочку выводов. Цепочка выводов, образованная последовательным применением правил 1 и 2, изображена на рисунке 5. Эта цепочка показывает, как система использует правила для вывода о том, насколько серьёзную дозу канцерогенного вещества пациент получил при работе с асбестом.
Рисунок 4 - Цепочка вывода для получения заключения о накопленной дозе асбестовой пыли.
Правила обеспечивают естественный способ описания процессов, управляемых сложной и быстро изменяющейся внешней средой. Через правила можно определять, как программа должна реагировать на изменение данных; при этом не нужно заранее знать блок-схему управления обработкой данных. В программе традиционного типа схема передачи управления и использования данных предопределена в самой программе. Обработка здесь осуществляется последовательными шагами, а ветвление имеет место только в заранее выбранных точках. Этот способ управления хорошо работает в случае задач, допускающих алгоритмическое решение, если к тому же при этом данные меняются достаточно медленно, например, при решении систем линейных уравнений. Для задач, ход решения которых управляется самими данными, где ветвление скорее норма, чем исключение, этот способ малоэффективен. В задачах такого рода правила дают возможность на каждом шаге оценить ситуацию и предпринять соответствующие действия. Использование правил упрощает объяснение того, что и как сделала программа, т. е. каким способом она пришла к конкретному заключению.
Представление знаний, основанное на фреймах, использует сеть узлов, связанных отношениями и организованных иерархически. Каждый узел представляет собой концепцию, которая может быть описана атрибутами и значениями, связанными с этим узлом. Узлы, которые занимают более низкое положение в иерархии, автоматически наследуют свойства узлов, занимающих более высокое положение. Эти методы обеспечивают естественный и эффективный путь классификации и построения таксономии, например залежей руд или различных заболеваний.
2.3 Технология разработки экспертных систем
Этапы разработки
Разработка программных комплексов экспертных систем как за рубежом, так и в нашей стране находится на уровне скорее искусства, чем науки. Это связано с тем, что долгое время системы искусственного интеллекта внедрялись в основном во время фазы проектирования, а чаще всего разрабатывалось несколько прототипных версий программ, прежде чем был получен конечный продукт. Такой подход действует хорошо в исследовательских условиях, однако в коммерческих условиях он является слишком дорогим, чтобы оправдать коммерчески жизненный продукт.