Искусственный интеллект и экспертные системы

Автор работы: Пользователь скрыл имя, 29 Ноября 2011 в 14:21, контрольная работа

Краткое описание

Понятие искусственный интеллект, как впрочем, и просто интеллект, весьма расплывчато. Если обобщить все сказанное за последние тридцать лет, то оказывается, что человек просто хочет создать себе подобного в той или иной форме, хочет, чтобы какие-то действия выполнялись более рационально, с меньшими затратами времени и энергии.

Прикрепленные файлы: 1 файл

Информационные системы 1.doc

— 91.50 Кб (Скачать документ)

                                                 ВВЕДЕНИЕ

     Понятие искусственный интеллект, как впрочем, и просто интеллект, весьма расплывчато. Если обобщить все сказанное за последние  тридцать лет, то оказывается, что человек  просто хочет создать себе подобного в той или иной форме, хочет, чтобы какие-то действия выполнялись более рационально, с меньшими затратами времени и энергии. С конца 40-х годов ученые все большего числа университетских и промышленных исследовательских лабораторий устремились к дерзкой цели: построение компьютеров, действующих таким образом, что по результатам работы их невозможно было бы отличить от человеческого разума. В последнее время наблюдается возрастание интереса к искусственному интеллекту, вызванное повышением требований к информационным системам. Умнеет программное обеспечение, умнеет бытовая техника. Мы неуклонно движемся к новой информационной революции, сравнимой по масштабам с развитием Интернета, имя которой - искусственный интеллект.

   Экспертные  системы (ЭС) возникли как значительный практический результат в применении и развитии методов искусственного интеллекта - совокупности научных дисциплин, изучающих методы решения задач интеллектуального (творческого) характера с использованием ЭВМ.

  ЭС - это набор программ, выполняющий функции эксперта при решении задач из некоторой предметной области. ЭС выдают советы, проводят анализ, дают консультации, ставят диагноз. Практическое применение ЭС на предприятиях способствует эффективности работы и повышению квалификации специалистов.

  Главным достоинством экспертных систем является возможность накопления знаний и  сохранение их длительное время. В отличии  от человека к любой информации экспертные системы подходят объективно, что  улучшает качество проводимой экспертизы. При решении задач, требующих обработки большого объема знаний, возможность возникновения ошибки при переборе очень мала.

           1. СОСТОЯНИЕ И ТЕНДЕНЦИИ ИСКУСТВЕННОГО ИНТЕЛЕКТА

     Искусственный интеллект вообще и экспертные системы  в частности прошли долгий и тернистый  путь: первые увлечения (1960 год), лженаука (1960-65), успехи при решении головоломок и игр (1965-1975), разочарование при решении практических задач (1970-1985), первые успехи при решении ряда практических задач (1962-1992), массовое коммерческое использование при решении практических задач (1993-1995). Но основу коммерческого успеха по праву составляют экспертные системы и, в первую очередь, экспертные системы реального времени. Именно они позволили искусственному интеллекту перейти от игр и головоломок к массовому использованию при решении практически значимых задач.

     Программные средства, базирующиеся на технологии и методах  искусственного интеллекта, получили значительное распространение в  мире. Их важность, и, в первую очередь, экспертных систем и нейронных сетей, состоит в том, что данные технологии существенно расширяют круг практически значимых задач, которые можно решать на компьютерах, и их решение приносит значительный экономический эффект. В то же время, технология экспертных систем является важнейшим средством в решении глобальных проблем традиционного программирования: длительность и, следовательно, высокая стоимость разработки приложений; высокая стоимость сопровождения сложных систем; повторная используемость программ и т.п. Кроме того, объединение технологий экспертных систем и нейронных сетей с технологией традиционного программирования добавляет новые качества к коммерческим продуктам за счет обеспечения динамической модификации приложений пользователем, а не программистом, большей "прозрачности" приложения (например, знания хранятся на ограниченном естественном языке, что не требует комментариев к ним, упрощает обучение и сопровождение), лучших графических средств, пользовательского интерфейса и взаимодействия.1

     По  мнению специалистов, в недалекой перспективе экспертные системы будут играть ведущую роль во всех фазах проектирования, разработки, производства, распределения, продажи, поддержки и оказания услуг. Их технология, получив коммерческое распространение, обеспечит революционный прорыв в интеграции приложений из готовых интеллектуально-взаимодействующих модулей.

     Одно  из наиболее популярных направлений  последних пяти лет связано с  понятием автономных агентов. Их нельзя рассматривать как "подпрограммы", - это скорее прислуга, даже компаньон, поскольку одной из важнейших их отличительных черт является автономность, независимость от пользователя. Идея агентов опирается на понятие делегирования своих функций. Другими словами, пользователь должен довериться агенту в выполнении определенной задачи или класса задач. Всегда существует риск, что агент может что-то перепутать, сделать что-то не так. Следовательно, доверие и риск должны быть сбалансированными. Автономные агенты позволяют существенно повысить производительность работы при решении тех задач, в которых на человека возлагается основная нагрузка по координации различных действий.

     В том, что касается автономных (интеллектуальных) агентов, хотелось бы отметить один весьма прагматический проект, который сейчас ведется под руководством профессора Генри Либермана в Media-лаборатории MIT (MIT Media Lab). Речь идет об агентах, отвечающих за автоматическое генерирование технической документации. Для решения этой задачи немало сделал в свое время академик Андрей Петрович Ершов, сформулировавший понятие деловой прозы как четко определенного подмножества естественного языка, которое может быть использовано, в частности, для синтеза технической документации (это одно из самых узких мест в любом производстве). Группа под руководством профессора Либермана исследует возможности нового подхода к решению этой проблемы, теперь уже на основе автономных агентов.2

     Следующее направление в области искусственной  жизни - генетическое программирование  - является попыткой использовать метафору генной инженерии для описания различных алгоритмов. Строки искусственной "генетической" системы аналогичны хромосомам в биологических системах. Законченный набор строк называется структурой. Структуры декодируются в набор параметров, альтернативы решений или точку в пространстве решений. Строки состоят из характеристик, или детекторов, которые могут принимать различные значения. Детекторы могут размещаться на разных позициях в строке. Все это сделано по аналогии с реальным миром. В природных системах полный генетический пакет называется генотипом. Организм, который образуется при взаимодействии генотипа с окружающей средой, носит название фенотипа. Хромосомы состоят из генов, которые могут принимать разные значения. (Например, ген цвета для глаза животного может иметь значение "зеленый" и позицию 10).

     Ныне  одним из лидеров в области  генетического программирования является группа исследователей из Стэндфордского университета, работающая под руководством профессора Джона Коза. Генетическое программирование вдохнуло новую жизнь  в хорошенько уже подзабытый язык LISP, который создавался группой Джона Маккарти (того самого, кто в 60-е годы ввел в наш обиход термин "искусственный интеллект") как раз для обработки списков и функционального программирования. Кстати, именно этот язык в США был и остается одним из наиболее распространенных языков программирования для задач искусственного интеллекта.

                   

    1.1 УСПЕХИ СИСТЕМ ИСКУСТВЕННОГО ИНТЕЛЕКТА И ИХ ПРИЧИНЫ

     Использование экспертных систем и нейронных сетей  приносит значительный экономический эффект. Так, например:

- American Express сократила свои потери на 27 млн. долларов в год благодаря  экспертной системе, определяющей  целесообразность выдачи или  отказа в кредите той или  иной фирме;

- DEC ежегодно  экономит 70 млн. долларов в год благодаря системе XCON/XSEL, которая по заказу покупателя составляет конфигурацию вычислительной системы VAX. Ее использование сократило число ошибок от 30% до 1%;

- Sira сократила  затраты на строительство трубопровода  в Австралии на 40 млн. долларов] за счет управляющей трубопроводом экспертной системы, реализованной на базе описываемой ниже системы G2.

     Коммерческие  успехи к экспертным системам и нейронным  сетям пришли не сразу. На протяжении ряда лет (с 1960-х годов) успехи касались в основном исследовательских разработок, демонстрировавших пригодность систем искусственного интеллекта для практического использования. Начиная примерно с 1985 (а в массовом масштабе, вероятно, с 1988-1990 годов), в первую очередь, экспертные системы, а в последние два года и нейронные сети стали активно использоваться в реальных приложениях.

Причины, приведшие системы искусственного интеллекта к коммерческому успеху, следующие:

1. СпециализацияПереход от разработки инструментальных средств общего назначения к проблемно/предметно специализированным средствам, что обеспечивает сокращение сроков разработки приложений, увеличивает эффективность использования инструментария, упрощает и ускоряет работу эксперта, позволяет повторно использовать информационное и программное обеспечение (объекты, классы, правила, процедуры).

2. Использование языков традиционного программирования и рабочих станцийПереход от систем, основанных на языках искусственного интеллекта (Lisp, Prolog и т.п.), к языкам традиционного программирования (С, С++ и т.п.) упростил "интегрированность" и снизил требования приложений к быстродействию и емкости памяти. Использование рабочих станций вместо ПК резко увеличило круг возможных приложений методов искусственного интеллекта.

3. Интегрированность. Разработаны инструментальные средства искусственного интеллекта, легко интегрирующиеся с другими информационными технологиями и средствами (с CASE, СУБД, контроллерами, концентраторами данных и т.п.).

4. Открытость и переносимостьРазработки ведутся с соблюдением стандартов, обеспечивающих данные характеристики.

5. Архитектура клиент/сервер. Разработка распределенной информационной системы в данной архитектуре позволяет снизить стоимость оборудования, используемого в приложении, децентрализовать приложения, повысить надежность и общую производительность, поскольку сокращается объем информации, пересылаемой между ЭВМ, и каждый модуль приложения выполняется на адекватном оборудовании.

     Переход от разработок ИС ИИ общего назначения (хотя они не утратили свое значение как средство для создания ориентированных ИС) к проблемно/предметно-ориентированным ИС ИИ обеспечивает:

       сокращение сроков разработки  приложений;

     увеличение  эффективности использования ИС;

       упрощение и ускорение работы  эксперта;

       повторную используемость информационного и программного обеспечения (объекты, классы, правила, процедуры).

     Перечисленные причины могут рассматриваться  как общие требования к инструментальным средствам создания систем искусственного интеллекта.

                        

                    2. ОБЩИЕ ПОНЯТИЯ ЭКСПЕРТНЫХ СИСТЕМ

     В начале восьмидесятых годов в  исследованиях по искусственному интеллекту сформировалось самостоятельное направление, получившее название «экспертные системы» (ЭС). Цель исследований по ЭС состоит  в разработке программ, которые при решении задач, трудных для эксперта-человека, получают результаты, не уступающие по качеству и эффективности решениям, получаемым экспертом. Исследователи в области ЭС для названия своей дисциплины часто используют также термин «инженерия знаний», введенный Е. Фейгенбаумом как «привнесение принципов и инструментария исследований из области искусственного интеллекта в решение трудных прикладных проблем, требующих знаний экспертов».

     Программные средства (ПС), базирующиеся на технологии экспертных систем, или инженерии знаний, получили значительное распространение в мире. Важность экспертных систем состоит в следующем:

 технология  экспертных систем существенно  расширяет круг практически значимых  задач, решаемых на компьютерах,  решение которых приносит значительный экономический эффект;

 технология  ЭС является важнейшим средством  в решении глобальных проблем  традиционного программирования: длительность  и, следовательно, высокая стоимость  разработки сложных приложений;

высокая стоимость сопровождения сложных систем, которая часто в несколько раз превосходит стоимость их разработки; низкий уровень повторной используемости программ и т.п.;

 объединение  технологии ЭС с технологией  традиционного программирования  добавляет новые качества к  программным продуктам за счет: обеспечения динамичной модификации приложений пользователем, а не программистом; большей «прозрачности» приложения (например, знания хранятся на ограниченном естественном языке, что не требует комментариев к знаниям, упрощает обучение и сопровождение);лучшей графике интерфейса и быстродействия.

Информация о работе Искусственный интеллект и экспертные системы