Автор работы: Пользователь скрыл имя, 26 Марта 2013 в 11:27, реферат
Основными видами термической обработки, различно изменяющими структуру и свойства стали и назначаемыми в зависимости от требовании, предъявляемых к полуфабрикатам (отливки, поковки, прокат и т. д.) и готовыми изделиями, являются: отжиг, закалка, отпуск.
Виды термической обработки
Основными видами термической обработки, различно изменяющими структуру и свойства стали и назначаемыми в зависимости от требовании, предъявляемых к полуфабрикатам (отливки, поковки, прокат и т. д.) и готовыми изделиями, являются: отжиг, закалка, отпуск.
Отжиг I рода
Отжиг I рода в зависимости от исходного состояния стали и температуры его выполнения может включать процессы гомогенизации, рекристаллизации и снятия остаточных напряжений. Характерная особенность этого вида отжига в том, что указанные процессы происходят независимо от того, протекают ли в сплавах при этой обработке фазовые превращения или нет. Поэтому отжиг I рода можно проводить при температурах выше или ниже температур фазовых превращений
Этот вид обработки в зависимости от температурных условий его выполнения уменьшает в определенной степени химическую или физическую неоднородность, созданную предшествующими обработками.
Гомогенизация (диффузионный отжиг). Диффузионный отжиг применяют для слитков легированной стали с целью уменьшения дендритной или внутрикристаллитной ликвации, которая повышает склонность стали, обрабатываемой давлением, к хрупкому излому, к анизотропии свойств и возникновению таких дефектов, как шиферность (слоистый излом) и флокены (тонкие внутренние трещины, наблюдаемые в изломе в виде белых овальных пятен). Диффузионный отжиг способствует более благоприятному распределению некоторых неметаллических включений вследствие частичного растворения и коагуляции.
Диффузионный отжиг понижает пластичность и вязкость легированной стали. Поэтому не только слитки, но и крупные отливки также нередко подвергают гомогенизации. Нагрев при диффузионном отжиге должен быть высоким (1100-1200 °С), так как только в этом случае более полно протекают диффузионные процессы, необходимые дня выравнивания состава в отдельных объемах стали.
Рекристаллизационный отжиг. Под рекристаллизационным отжигом понимают нагрев холоднодеформированной стали выше температуры рекристаллизации, выдержку при этой температуре с последующим охлаждением. Цель отжига — устранение наклепа и повышение пластичности. Этот вид отжига применяют перед холодной обработкой давлением и как промежуточную операцию для снятия наклепа между операциями холодного деформирования. В некоторых случаях рекристаллизационный отжиг используют и в качестве окончательной термической обработки.
Температура рекристаллизационного отжига стали зависит от ее состава и чаще находится в пределах 650—760 °С.
Отжиг для снятия остаточных напряжений. Этот вид отжига применяют для отливок, сварных изделий, деталей после обработки резанием и др., в которых в процессе предшествующих технологических операций из-за неравномерного охлаждения, неоднородной пластической деформации и т. п. возникли остаточные напряжения. Остаточные напряжения могут вызвать изменение размеров, коробленне и подводку изделия в процессе его обработки (например резанием), эксплуатации или хранения. Отжиг"стальных изделий для снятия напряжении проводят при 160-700 °С с последующим медленным охлаждением. Так, многие детали прецизионных станков (ходовые винты, высоконапряженные зубчатые колеса, червяки и др.) нередко проходят отжиг (отпуск) после основной механической обработки при 570-600 °С в течение 2-3 ч, а после окончательной механической обработки для снятия шлифовочных напряжений при 160—180 °С в течение 2—2,5 ч. Отжиг для снятия сварочных напряжений проводят при 650—700 °С.
Остаточные напряжения снимаются и при проведении других видов отжига (например, рекристаллизационного, с фазовой перекристаллизацией, а также при отпуске — особенно высоком закаленной стали).
Отжиг II рода (фазовая перекристаллизация)
Отжиг II рода заключается в нагреве стали до температур выше точек Ас3 или Ас1 выдержке и последующем, как правило, медленном охлаждении, в результате которого протекающие фазовые превращения приближают сталь к практически равновесному структурному состоянию; феррит + перлит в доэвтектоидных сталях; перлит в эвтектоидной стали, перлит + вторичный цементит в заэвтектоидных сталях. После отжига сталь обладает низкой твердостью и прочностью при достаточной пластичности. Фазовая перекристаллизация, происходящая при отжиге, измельчает зерно и устраняет строчечность, которая образуется при окончании горячей деформации и другие неблагоприятные (с точки зрения уровня механических свойств) структуры стали.
Отжиг в промышленности в большинстве случаев является подготовительной термической обработкой. Отжигу подвергают отливки, поковки, прокат. Понижая прочность и твердость, отжиг улучшает обработку резанием средне- и высокоуглеродистой стали. Измельчая зерно, снимая внутренние напряжения и уменьшая структурную неоднородность, отжиг способствует повышению пластичности и вязкости по сравнению с полученной после литья, ковки и прокатки. Отжиг для многих крупных отливок является окончательной термической обработкой, так как при этом в изделиях практически отсутствуют остаточные напряжения и их деформация оказывается минимальной.
Различают следующие виды отжига: полный, изотермический, неполный, сфероидизирующий и низкий.
Полный отжиг заключается в нагреве доэвтектоиднои стали на 30—50 °С выше температуры, соответствующей точке Ас3, выдержке при этой температуре для полного прогрева и завершения фазовых превращений в объеме металла и последующем медленном охлаждении.
При этом отжиге происходит полная фазовая рекристаллизация стали. При нагреве выше точки Ас3 образуется аустенит характеризующийся мелким зерном, поэтому при охлаждении возникает мелкозернистая структура, обеспечивающая высокую вязкость и пластичность и получение высоких свойств после окончательной термической обработки
Если отжиг предназначается и для снятия напряжений (например, в отливках сложной конфигурации), медленное охлаждение с печью проводят почти до комнатной температуры.
Охлаждение деформированных легированных сталей, склонных к образованию флокенов, следует проводить особенно медленно и часто по сложным (ступенчатым) режимам.
Полному отжигу подвергают сортовой прокат, поковки и фасонные отливки.
Рис. 1. Схематические кривые различных видов отжига:
1 — гомогенизация (диффузионный отжиг); 2 — полный отжиг; 3 — неполный отжиг; 4 — низкотемпературный отжиг; 5 — рекристаллизующий отжиг (рекристаллизация); 6— отпуск (после закалки).
Изотермический отжиг. В этом случае cталь, обычно легированную, нагревают до точки Ас3 + (50—70 °С) и сравнительно быстро охлаждают (обычно переносом в другую печь) до температуры, лежащей ниже точки А1 на 100—150 °С, в зависимости от характера кривой изотермического распада аустенита. При этой температуре назначают изотермическую выдержку, необходимую для полного распада аустенита, после чего следует охлаждение на воздухе.
Преимущество изотермического отжига состоит в уменьшении длительности процесса, особенно для легированных сталей, которые приходится очень медленно охлаждать для требуемого снижения твердости. Для наибольшего ускорения этого типа отжига температуру изотермической выдержки выбирают близкой к температуре минимальной устойчивости переохлажденного аустенита в перлитной области. Другое преимущество изотермического отжига заключается в получении более однородной структуры, так как при изотермической выдержке температура по сечению изделия выравнивается и превращение по всему объему стали происходит при одинаковой степени переохлаждения. После отжига при температуре до 930— 950 °С укрупняется зерно аустенита, улучшается обрабатываемость резанием и повышается чистота поверхности.
Изотермическому отжигу подвергают штамповки, заготовки инструмента и других изделий небольших размеров.
Неполный отжиг отличается от полного тем, что сталь нагревают до более низкой температуры (немного выше точки Aci). При неполном отжиге доэвтектоидной стали происходит частичная перекристаллизация стали, а именно лишь переход перлита в аустенит. Избыточный феррит лишь частично превращается в аустенит, поэтому значительная его часть не подвергается перекристаллизации. Для доэвтектоидной стали неполный отжиг применяется лишь тогда, когда отсутствует перегрев, ферритная полосчатость, а требуется только снижение твердости. Заэвтектоидные стали подвергают только неполному отжигу. В этих сталях нагрев несколько выше точки Ас1 (обычно на 10—30 °С) вызывает практически полную перекристаллизацию металлической матрицы.
Высокий отпуск («низкий отжиг»). После горячей механической обработки сталь чаще имеет мелкое зерно и удовлетворительную микроструктуру, поэтому не требуется фазовой перекристаллизации (отжига). Но вследствие ускоренного охлаждения после прокатки или другой горячей обработки легированные стали имеют неравновесную структуру: сорбит, троостит, бейнит или мартенсит и, как следствие этого, высокую твердость. Для снижения твердости на металлургических заводах сортовой прокат подвергают высокому отпуску при 650—680 °С (несколько ниже точки А1). При нагреве до указанных температур происходят процессы распада мартенсита и (или) бейнита, коагуляция карбидов в троостите и в итоге снижается твердость. Углеродистые стали подвергают высокому отпуску в тех случаях, когда они предназначаются для обработки резанием, холодной высадки или волочения. После высокотемпературного отпуска доэвтектоидная сталь лучше обрабатывается резанием, чем после полного отжига, когда структура — обособленные участки феррита и перлита. Структурно свободный феррит налипает на кромку инструмента, ухудшает качество поверхности изделия, снижает теплоотдачу, и поэтому снижает скорость резания и стойкость инструмента. Для высоколегированных сталей, у которых практически не отмечается перлитного превращения , высокий отпуск является единственной термической обработкой, позволяющей понизить их твердость.
Отжиг нормализационный (нормализация). Нормализация заключается в нагреве доэвтектоидной стали до температуры, превышающей точку Ас3 на 50 °С, заэвтектоидной выше Аст также на 50 °С непродолжительной выдержке для прогрева садки и завершения фазовых превращений и охлаждении на воздухе (рис. 2, режим 3). Нормализация вызывает полную фазовую перекристаллизацию стали и устраняет крупнозернистую структуру, полученную при литье или прокатке, ковке или штамповке. Нормализацию широко применяют для улучшения свойств стальных отливок вместо закалки и отпуска,
По сравнению с печью ускоренное охлаждение на воздухе приводит к распаду аустенита при более низких температурах, что повышает дисперсность феррито-цементитной структуры и увеличивает количество перлита. Это на 10—15 % повышает прочность и твердость нормализованной средне- и высокоуглеродистой стали по сравнению с отожженной. Нормализация горячекатаной стали (по сравнению с отжигом) повышает ее сопротивление хрупкому разрушению, снижая порог хладноломкости и повышая работу развития трещины. Назначение нормализации различно в зависимости от состава стали. Для низкоуглеродистых сталей нормализацию применяют вместо отжига. Нормализация обеспечивает большую производительность при обработке резанием и получение более чистой поверхности. Для отливок из среднеуглеродистой стали нормализацию или нормализацию с высоким отпуском применяют вместо закалки и высокого отпуска. Механические свойства в этом случае будут ниже, но изделия будут подвергнуты меньшей деформации по сравнению с получаемой при закалке, и вероятность появления трещин практически исключается.
Цель нормализации — получение мелкозернистой структуры, выравнивание структурной неоднородности (в поковках, отливках или деталях после цементации), улучшение обрабатываемости резанием (для низкоуглеродистой стали), повышение твёрдости и механических свойств, устранение наклёпа после обработки резанием и подготовка структуры к последующей термообработке (закалке).
Закалка
Закалка заключается в нагреве стали на 30—50 °С выше Ас3 для до-эвтектоидных сталей или на 30—50 °С выше Ас1 для заэвтектоидных сталей, выдержке для завершения фазовых превращений и последующем охлаждении со скоростью выше критической. Для углеродистых сталей это охлаждение проводят чаще в воде, а для легированных — в масле или других средах. Закалка не является окончательной операцией термической обработки. Чтобы уменьшить хрупкость и напряжения, вызванные закалкой, и получить требуемые механические свойства, сталь после закалки подвергают отпуску.
Цель закалки с последующим отпуском — обеспечение работоспособности, длительной эксплоатационной стойкости изделий (получение высоких характеристик механических свойств, высокой износоустойчивости и коррозиеустойчивости) или изменение физических свойств (электрических и магнитных).
Инструментальную сталь подвергают закалке и отпуску для повышения твердости, износостойкости и прочности, а конструкционную сталь — для повышения прочности, твердости, получения достаточно высокой пластичности, вязкости (параметров вязкости разрушения), а для ряда деталей также и получения высокой износостойкости.
Охлаждающие жидкости.
Вода как охлаждающая среда имеет некоторые существенные недостатки:
1) высокая скорость охлаждения в области температур мартенсит-ного превращения нередко приводит к образованию закалочных дефектов;
2) с повышением температуры резко ухудшается закалочная способность . При температуре воды 80—90 °С пленочное кипение распространяется на большую область температур и занимает до 95 % всего периода охлаждения.
Наиболее высокой и равномерной охлаждающей способностью отличаются холодные 8—12 %-ные водные растворы NaCl и NaOH, которые хорошо зарекомендовали себя на практике. Для стали с низкой критической скоростью закалки рекомендуются растворы NaOH повышенной концентрации (30—50 %).
Для легированных сталей, обладающих высокой устойчивостью переохлажденного аустенита при закалке, применяют минеральное масло (чаще нефтяное).
Масло как закалочная среда имеет ряд преимуществ: неоольшую скорость охлаждения в мартенситном интервале температур, что уменьшает возникновение закалочных дефектов, постоянство закаливающей способности в широком интервале температур среды (20—150 °С). Перепад температур между поверхностью и центром изделия при закалке в масле меньше, чем при охлаждении в воде. К недостаткам следует отнести повышенную воспламеняемость (температура вспышки 165—300 °С), недостаточную стабильность и низкую охлаждающую способность в области температур перлитного превращения, образование пригара на поверхности изделий, а также повышенную стоимость.
Закаливаемость и прокаливаемость стали.
Под закаливаемостью понимают способность стали повышать твердость в результате закалки. Закаливаемость стали в первую очередь содержанием в стали углерода. Чем больше в мартенсите углерода тем выше его твердость. Легирующие элементы оказывают относительно небольшое влияние на закаливаемость
Способы закалки
Наиболее широкое применение получила закалка в одном охладителе. Такую закалку называют непрерывной. Во многих случаях, особенно для изделий сложной формы и при необходимости уменьшения деформаций, применяют и другие способы закалки.
Прерывистая закалка (в двух средах). Изделие, закаливаемое по этому способу, сначала быстро охлаждают в воде до температуры несколько выше точки М„, а затем быстро переносят в менее интенсивный охладитель (например, в масло или на воздух), в котором оно охлаждается до 20 °С. В результате охлаждения во второй закалочной среде уменьшаются внутренние напряжения, которые возникли бы при быстром охлаждении в одной среде (воде), в том числе и в области температур мартенситного превращения.