Ремонт клиновой задвижки

Автор работы: Пользователь скрыл имя, 10 Августа 2012 в 22:34, контрольная работа

Краткое описание

Конструкционная сталь - сталь, которая применяется для изготовления различных деталей, механизмов и конструкций в машиностроении и строительстве и обладает определёнными механическими, физическими и химическими свойствами. Конструкционные стали подразделяются на несколько подгрупп.

Содержание

1. Конструкционные углеродистые стали, область применения 3
2. Контактные материалы 7
3. Медь. Медные сплавы, маркировка область применения 10
4. Расшифровать марки сталей 14
Список используемой литературы 15

Прикрепленные файлы: 1 файл

Вариант 11 (материаловедение).docx

— 50.58 Кб (Скачать документ)

Содержание

1. Конструкционные углеродистые стали, область применения 3

2. Контактные материалы 7

3. Медь. Медные сплавы, маркировка область применения 10

4. Расшифровать марки сталей 14

Список используемой литературы 15

 

 

1. Конструкционные углеродистые  стали, область применения

Конструкционная сталь - сталь, которая применяется для изготовления различных деталей, механизмов и конструкций в машиностроении и строительстве и обладает определёнными механическими, физическими и химическими свойствами. Конструкционные стали подразделяются на несколько подгрупп.

Качество конструкционных углеродистых сталей

Качество  конструкционных углеродистых сталей определяется наличием в стали вредных примесей фосфора (P) и серы (S). Фосфор — придаёт стали хладноломкость (хрупкость). Сера — самая вредная примесь — придаёт стали красноломкость. Содержание вредных примесей в стали:

  • Обыкновенного качества — P и S — до 0.05 % (маркировка Ст).
  • Качественная — P и S — до 0.035 % (маркировка Сталь).
  • Высококачественная — P и S — до 0.025 % (маркировка А в конце марки).
  • Особовысококачественная — Р и S — до 0.015 % (маркировка Ш в конце марки).

Стали конструкционные углеродистые обыкновенного качества

Широко применяются  в строительстве и машиностроении, как наиболее дешёвые, технологичные, обладающие необходимыми свойствами при изготовлении конструкций массового назначения. В основном эти стали используют в горячекатанном состоянии без дополнительной термической обработки с ферритно-перлитной структурой. В зависимости от последующего назначения конструкционные углеродистые стали обыкновенного качества подразделяют на три группы: А, Б, В.

Стали группы А

Поставляются  с определёнными регламентированными  механическими свойствами. Их химический состав не регламентируется. Эти стали  применяются в конструкциях, узлы которых не подвергаются горячей  обработке — ковке, горячей штамповке, термической обработке и т. д. В связи с этим механические свойства горячекатаной стали сохраняются.

Стали группы Б

Поставляются  с определённым регламентированным химическим составом, без гарантии механических свойств. Эти стали применяются в изделиях, подвергаемых горячей обработке, технология которой зависит от их химического состава, а конечные механические свойства определяются самой обработкой.

Стали группы В

Поставляются  с регламентируемыми механическими  свойствами и химическим составом. Эти стали применяются для  изготовления сварных конструкций. Их свариваемость определяется химическим составом, а механические свойства вне зоны сварки определены в состоянии поставки. Такие стали применяют для более ответственных деталей.

По степени  раскисления углеродистые стали  обыкновенного качества подразделяются на спокойные (СП), полуспокойные (ПС), кипящие (КП). Степень раскисления определяется содержанием кремния (Si) в этой стали. Спокойные — 0.012-0.03 % (Si), полуспокойные — 0.05-0.07 % (Si), кипящие — менее 0.07 % (Si).

Маркировка

Основные  марки конструкционных углеродистых сталей обыкновенного качества:

Ст1КП2; БСт2ПС; ВСт3ГПС; Ст4-2; … ВСт6СП3.

  • Буква перед маркой показывает группу стали. Сталь группы А -буквой не обозначается.
  • Ст - показывает, что сталь обыкновенного качества.
  • Первая цифра - номер по ГОСТу (от 0 до 6).
  • Буква Г после первой цифры - повышенное содержание марганца (Mn)-(служит для повышения прокаливаемости стали).
  • СП; ПС; КП - степень раскисления стали.
  • Вторая цифра — номер категории стали (от 1 до 6 — основные механические свойства). Сталь 1-ой категории цифрой не обозначается.
  • Тире между цифрами указывает, что заказчик не предъявлял требований к степени раскисления стали.

Применение

  • Ст1; Ст2 — проволока, гвозди, заклёпки.
  • Ст3; Ст4 — крепёжные детали, фасонный прокат.
  • Ст5; Ст6 — слабонагруженные валы, оси.

Стали углеродистые качественные

Качественными углеродистыми сталями являются стали марок: Сталь08; Сталь10; Сталь15 …; Сталь78; Сталь80; Сталь85. Также к  этому классу относятся с повышенным содержанием марганца (Mn — 0.7-1.0 %): Сталь 15Г; 20Г … 65Г, имеющие повышенную прокаливаемость.

Маркировка

  • Сталь - слово «Сталь» указывает, что данная углеродистая сталь качественная. (В настоящее время слово «Сталь» не пишется, указывается только индекс и последующие буквы)
  • Цифра - указывает на содержание в стали углерода (С) в сотых долях процента.

Применение

Низкоуглеродистые стали марок Сталь08, Сталь08КП, Сталь08ПС относятся к мягким сталям, применяемым  чаще всего в отожжённом состоянии  для изготовления деталей методом холодной штамповки - глубокой вытяжки. стали марок Сталь10, Сталь15, Сталь20, Сталь25 обычно используют как цементируемые, а высокоуглеродистые Сталь60 … Сталь85 — для изготовления пружин, рессор, высокопрочной проволоки и других изделий с высокой упругостью и износостойкостью.

Сталь30 …  Сталь50 и аналогичные стали с  повышенным содержанием марганца Сталь30Г, Сталь40Г, Сталь50Г применяют для  изготовления самых разнообразных  деталей машин.

Стали повышенной обрабатываемости (автоматные)

К сталям с  повышенной обрабатываемостью или  автоматным сталям относят стали  с высоким содержанием серы и  фосфора, а также стали, специально легированные селеном (Se), теллуром (Те) или свинцом (Pb). Указанные элементы способствуют повышению скорости резания, уменьшают усилие резания и изнашиваемость инструмента улучшают чистоту и размерную точность обработанной поверхности, облегчают отвод стружки из зоны резания и т. д. Эти стали используют в массовом производстве для изготовления деталей на станках-автоматах.

Стали с повышенным содержанием серы и фосфора обладают пониженными механическими свойствами и их используют для изготовления малонагруженных деталей (например, метизов).

 

2. Контактные материалы

Контактные  материалы - материалы для скользящих контактов (коллекторные пластины электрических машин), которые должны обладать низкими значениями удельного сопротивления и падения напряжения на контактах, высокими значениями минимального тока и стойкости к истиранию (износостойкостью), электрической эрозии и коррозии. Скользящие контакты, в свою очередь, можно разделить на металлические и электротехнические угольные.

Для изготовления пружинных металлических скользящих контактов (применяемые в основном в переключателях, потенциометрах, реостатах) используют специальные сорта бронз: кадмиевые, бериллиевые и хромистые (БрКд1, БрБ2 и др.), обладающие высокой упругостью, стойкостью к истиранию и низким значением удельного сопротивления. Например  сплав Сu—Cd (Cd~l%), образует твердый раствор, который в три раза более стоек к истиранию, чем медь. Для изготовления скользящих контактов применяют также латуни (например, ЛС59-1, ЛМц58-2). Металлические скользящие контакты имеют наиболее высокую стойкость к истиранию в паре с электротехническими угольными материалами.

Электротехнические  угольные материалы обладают относительно высокой электро- и теплопроводностью (уступая металлам), очень низким коэффициентом трения, высокой химической стойкостью, многие из них — высокой нагревостойкостью (большей, чем у металлов). Эти материалы широко используют для изготовления угольных электродов различного применения, щеток для электрических машин и автотрансформаторов, угольных порошков для микрофонов и т.д. Щетки выпускают следующих марок: УГ (угольно-графитные), Г (графитные), ЭГ (электрографитированные), М и МГ (медно-графитные). Основным сырьем для производства электроугольных изделий являются природный графит и сажи. Для получения монолитного изделия графит и сажу смешивают со связующим веществом — каменноугольной смолой (побочный продукт коксования каменного угля) или жидким стеклом, прессуют и подвергают обжигу при температуре 2200—2500°С. Этот процесс называют графитированием. В результате графитирования увеличивается размер кристаллитов, повышается электропроводность и снижается твердость.

Природный графит — мягкое кристаллическое вещество темно-серого цвета, представляющее собой  одну из двух аллотропных форм углерода; имеет слоистое строение. В направлении слоев электропроводность носит металлический характер. Для поликристаллических образцов удельное сопротивление ρv ≈ 8 мкОм•м, ТКρ = -1•10-3К-1 . Отдельные чешуйки графита легко отделяются и скользят по его поверхности, образуя сухую смазку. Известен искусственный графит, получаемый путем термической перекристаллизации углей при температуре 2200—2500°С.

Сажи представляют собой угольный порошок высокой степени дисперсности (частицы сферической формы достигают 10—300 нм); они имеют более мелкокристаллическую структуру, чем графит (их иногда называют коллоидным углеродом). Графитовая структура в сажах еще не вполне сформирована. Сажи получают при неполном сгорании многих органических веществ.

Для изготовления слаботочных разрывных контактов используют благородные и тугоплавкие металлы.

Из благородных  металлов используют серебро, золото, платину и различные сплавы на их основе, например сплавы систем: золото-серебро (Аu—Ag), платина-рутений (Pt—Ru), платина-родий (Pt—Rh), серебро-кадмий (Ag—Cd), серебро-палладий (Ag—Pd), серебро-магний-никель (Ag—Mg—Ni) и др. Золото и платину в чистом виде используют для изготовления прецизионных контактов. Золото в основном используют в виде сплавов с серебром Ag, платиной Pt, никелем Ni, цирконием Zr; платину - в виде сплавов с иридием Ir, никелем Ni, серебром Ag и золотом Аu.

Из тугоплавких  металлов применяют вольфрам W и молибден Мо. Достоинством вольфрама является его высокая стойкость к дугообразованию и практическое отсутствие свариваемости. Однако у вольфрама сравнительно толстая оксидная пленка и поэтому требуется высокое контактное давление. Недостатком молибдена является образование оксидных пленок, которые имеют рыхлую структуру и могут внезапно полностью нарушать контактную проводимость. У вольфрама, легированного молибденом, повышены твердость и удельное сопротивление и понижены Тпл и коррозионная стойкость.

Для изготовления разрывных контактов также широко используют медь, сплавы и биметаллы  на ее основе.

В производстве сильноточных разрывных контактов широко применяют композиционные материалы, представляющие собой смесь двух фаз, одна из которых обеспечивает высокую электро- и теплопроводность контактов, другая — в виде тугоплавких включений придает контактам стойкость к механическому износу, электрической эрозии и свариванию. Сильноточные разрывные контакты из композиционных материалов получают методом порошковой металлургии. В качестве контактных материалов хорошо себя зарекомендовали композиции на основе меди и серебра: серебро—оксид кадмия, серебро—оксид меди, медь—графит, серебро—никель, серебро—графит. Применяют также тройные композиции: серебро-никель—графит, серебро—вольфрам—никель. В этих композициях медная и серебряная фазы обеспечивают электро- и теплопроводность контактам, а включения из оксида кадмия и оксида меди, а также вольфрама, никеля и графита повышают износо- и термостойкость и препятствуют свариванию контактов. В качестве электроконтактных композиций в мощных высоковольтных масляных и воздушных выключателях нашли применение Сu—W, в высоковольтных масляных выключателях Сu—Мо, в вакуумных камерах Сu—Bi—В, Сr—Сu—W, Fe—Сu—Bi. Для изготовления сильноточных разрывных контактов, эксплуатируемых при повышенных напряжениях и контактных давлениях, используют также твердую медь, что существенно удешевляет электротехнические устройства.

3. Медь. Медные сплавы, маркировка  область применения

Медь - элемент побочной подгруппы первой группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 29. Обозначается символом Cu (лат. Cuprum). Простое вещество медь (CAS-номер: 7440-50-8) - это пластичный переходный металл золотисто-розового цвета (розового цвета при отсутствии оксидной плёнки). C давних пор широко применяется человеком.

Из-за низкого удельного сопротивления (уступает лишь серебру, удельное сопротивление при 20 °C 0,01724-0,0180 мкОм·м), медь широко применяется в электротехнике для изготовления силовых кабелей, проводов или других проводников, например, при печатном монтаже. Медные провода, в свою очередь, также используются в обмотках энергосберегающих электроприводов (быт: электродвигателях) и силовых трансформаторов. Для этих целей металл должен быть очень чистый: примеси резко снижают электрическую проводимость. Например, присутствие в меди 0,02 % алюминия снижает её электрическую проводимость почти на 10 %.

Другое полезное качество меди - высокая теплопроводность. Это позволяет применять её в различных теплоотводных устройствах, теплообменниках, к числу которых относятся и широко известные радиаторы охлаждения, кондиционирования и отопления, компьютерных кулерах, тепловых трубках.

В связи с высокой механической прочностью, но одновременно пригодностью для механической обработки, медные бесшовные трубы круглого сечения получили широкое применение для транспортировки жидкостей и газов: во внутренних системах водоснабжения, отопления, газоснабжения, системах кондиционирования и холодильных агрегатах. В ряде стран трубы из меди являются основным материалом, применяемым для этих целей: во Франции, Великобритании и Австралии для газоснабжения зданий, в Великобритании, США, Швеции и Гонконге для водоснабжения, в Великобритании и Швеции для отопления.

В России производство водогазопроводных  труб из меди нормируется национальным стандартом ГОСТ Р 52318-2005, а применение в этом качестве федеральным Сводом Правил СП 40-108-2004. Кроме того, трубопроводы из меди и сплавов меди широко используются в судостроении и энергетике для транспортировки жидкостей и пара.

Сплавы на основе меди

В разнообразных областях техники  широко используются сплавы с использованием меди, самыми широко распространёнными  из которых являются упоминавшиеся  выше бронза и латунь. Оба сплава являются общими названиями для целого семейства материалов, в которые помимо олова и цинка могут входить никель, висмут и другие металлы. Например, в состав так называемого пушечного металла, который в XVI—XVIII вв. действительно использовался для изготовления артиллерийских орудий, входят все три основных металла - медь, олово, цинк; рецептура менялась от времени и места изготовления орудия. В наше время находит применение в военном деле в кумулятивных боеприпасах благодаря высокой пластичности, большое количество латуни идёт на изготовление оружейных гильз.

Информация о работе Ремонт клиновой задвижки