Автор работы: Пользователь скрыл имя, 18 Января 2012 в 22:00, реферат
Сталь отличается от чугуна меньшим содержанием углерода, кремния, марганца, примесей серы и фосфора. Исходные материалы для получения стали — передельный чугун и стальной лом (скрап). Следовательно, сущностью передела чугуна в сталь является уменьшение содержания углерода и других элементов и перевода их в шлак или газы.
1. Сущность процесса
1.1 Кислородный конвертер
2. Производство стали в мартеновских печах
2.1 Мартеновская печь
2.2 Мартеновский процесс
3. Разливка стали
3.1 Изложницы
3.2 Непрерывная разливка стали
4. Затвердевание и строение стальных слитков
4.1 Кипящая сталь
4.2 Спокойная сталь
4.3 Полуспокойная сталь
5 Способы повышения качества стали
5.1 Вакуумная обработка стали
5.2 Обработка стали синтетическим шлаком
5.3 Электрошлаковый переплав
5.4 Вакуумно-дуговой переплав
5.5 Плазменно-дуговой переплав
5.6 Электронно-лучевой переплав
Список литературы
СОДЕРЖАНИЕ
1. Сущность процесса
1.1 Кислородный конвертер
2. Производство стали в мартеновских печах
2.1 Мартеновская печь
2.2 Мартеновский процесс
3. Разливка стали
3.1 Изложницы
3.2 Непрерывная разливка стали
4. Затвердевание и строение стальных слитков
4.1 Кипящая сталь
4.2 Спокойная сталь
4.3 Полуспокойная сталь
5 Способы повышения качества стали
5.1 Вакуумная обработка стали
5.2 Обработка стали синтетическим шлаком
5.3 Электрошлаковый переплав
5.4 Вакуумно-дуговой переплав
5.5 Плазменно-дуговой переплав
5.6 Электронно-лучевой переплав
Список литературы
1. Сущность процесса
Сталь отличается от чугуна меньшим содержанием углерода, кремния, марганца, примесей серы и фосфора. Исходные материалы для получения стали — передельный чугун и стальной лом (скрап). Следовательно, сущностью передела чугуна в сталь является уменьшение содержания углерода и других элементов и перевода их в шлак или газы.
В настоящее время сталь получают в кислородных конвертерах, мартеновских и электрических печах.
Производство
стали в кислородных
Кислородно-конвертерный
процесс заключается в
1.1 Кислородный конвертер (рис. 1) представляет собой сосуд 1 грушевидной формы из стального листа, футерованный внутри основным кирпичом 2. Рабочее положение конвертера вертикальное. Кислород подается в него под давлением 0,8...1 МПа с помощью водоохлаждаемой фурмы 3, вводимой в конвертер через горловину 4 и располагаемой над уровнем жидкого металла на расстоянии 0,3...0,8 м.
Конвертеры изготовляют емкостью 100...350 т жидкого чугуна. Общий расход технического кислорода на получение 1 т стали, составляет 50...60 м3.
Материалами для получения стали в кислородном конвертере служат жидкий передельный чугун и стальной лом. Для наводки шлака в конвертер добавляют железную руду и известь, а для его разжижения — боксит и плавиковый шпат.
Перед началом работы конвертер поворачивают на цапфах 5 вокруг горизонтальной оси и с помощью завалочной машины загружают до 30 % металлолома, затем заливают жидкий чугун при температуре 1250...1400 °С, возвращают конвертер в исходное вертикальное положение, вводят кислородную фурму, подают кислород и добавляют шлакообразующие материалы.
Изменение металла по ходу плавки показано на рис. 2. При продувке происходит окисление углерода и других примесей как непосредственно кислородом дутья, так и оксидом железа FeO. Одновременно образуется активный шлак с необходимым содержанием СаО, благодаря чему происходит удаление серы и фосфора с образованием устойчивых соединений P2O5- ЗСаО и CaS в шлаке.
В момент, когда содержание углерода достигает заданного для выплавляемой марки стали, подачу кислорода прекращают, конвертер поворачивают и выливают вначале сталь, а затем — шлак.
Для уменьшения содержания кислорода сталь при выпуске из конвертера раскисляют, т. е. вводят в нее элементы с большим, чем у железа, сродством к. кислороду (Si, Mn, A1). Взаимодействуя с оксидом железа FeO, они образуют нерастворимые оксиды МпО, SiO2, А1203, переходящие в шлак.
Производительность кислородного конвертера емкостью 300 т достигает 400...500 т/ч, в то время как производительность мартеновских и электропечей не превышает 80 т/ч. Благодаря высокой производительности и малой металлоемкости кислородно-конвертерный способ становится основным способом производства стали.
2. Производство стали в мартеновских печах
2.1 Мартеновская печь (рис. 3) представляет собой регенеративную пламенную печь, высокая температура в которой (1750... 1800 °С) достигается за счет сгорания газа в плавильном пространстве. Газ и воздух подогреваются в регенераторах. Слева от плавильного пространства 7 находятся каналы для газа 3 и воздуха 4, соединенные с регенераторами 1 и 2. Такие же каналы для газа 9 и воздуха 8 имеются справа от плавильного пространства 7; они соответственно соединены с регенераторами 10 и 11. Каждый из регенераторов имеет насадку из выложенного в клетку огнеупорного кирпича. Шихта загружается через окна 5.
Подаваемые в печь газ и воздух проходят через предварительно нагретые до температуры 1200... 1250 °С регенераторы 10 и 11, нагреваются в них и поступают в плавильное пространство печи. Здесь газ и воздух смешиваются и сгорают, образуя пламя высокой температуры. Продукты сгорания по каналам 3 и 4 поступают в регенераторы 1 и 2, нагревают их, охлаждаясь до 500...600 °С, и уходят в дымовую трубу 13. По мере охлаждения регенераторов 10 и 11 направление газа и воздуха в печи меняют на обратное переключением клапанов 12 и 14. Тогда газ и воздух поступают в плавильное пространство по каналам 3 и 4, пройдя нагретые регенераторы 1 и 2, а продукты сгорания выходят по каналам 8 и 9, нагревают насадку регенераторов 10 и 11 и уходят в трубу 13. Таким образом, газ и воздух при работе печи проходят через попеременно нагреваемые то левые, то правые регенераторы.
Мартеновские печи, работающие на мазуте, имеют с каждой стороны по одному регенератору для нагрева только воздуха.
В нашей стране эксплуатируются мартеновские печи емкостью от 20 до 900 т жидкой стали. Важной характеристикой этих печей является также площадь пода 6. Для печи емкостью 900 т она составляет около 120 м2.
2.2 Мартеновский процесс. Материалами для выплавки стали в мартеновской печи могут быть: стальной лом (скрап), жидкий я твердый чугуны, железная руда. В зависимости от их соотношения в шихте различают:
1) скрап-рудный процесс на шихте из жидкого чугуна с добавкой 25...39 % стального скрапа и железной руды;
2) скрап-процесс на шихте из стального лома и 25...45 % чушкового передельного чугуна.
Флюсом в обоих процессах обычно служит известняк СаСО3 (8...12 % от массы металла).
Более широкое применение в металлургии получил скрап-рудный процесс выплавки стали в основной мартеновской печи. Вначале в печь загружают и прогревают железную руду и известняк, затем добавляют стальной скрап и заливают жидкий чугун. В процессе плавки примеси в чугуне окисляются за счет оксида железа руды и скрапа:
3Si + 2Fе2Оз== 3SiO2+ 4Fe; ЗМп + Fe20з== ЗМпО + 2Fe;
6Р + 5Fе2Оз= ЗРзО5+ lOFe; ЗС + Ре20з= ЗСО + 2Fe.
Сера удаляется в результате взаимодействия сернистого железа с известью:
FeS + СаО == FeO + CaS.
Оксиды SiO2, MnO, P2O5, CaO, а также сульфид CaS образуют шлак, периодически выпускаемый из печи в шлаковые чаши.
Для интенсификации процесса плавления и окисления примесей ванну продувают кислородом, подаваемым через водоохлаждаемые фурмы. Продувка кислородом позволяет в 2...3 раза сократить длительность процесса, уменьшить расход топлива и железной руды.
После плавления
шихты начинается период кипения
ванны. В это время интенсивно
окисляется углерод в металле. В
момент, когда содержание его достигает
заданного, а количество серы и фосфора
уменьшается до минимума, кипение
прекращают и начинают раскисление
стали в ванне печи ферромарганцем,
ферросилицием и алюминием. Окончательно
сталь раскисляют алюминием и
ферросилицием в
Скрап-процесс применяют на машиностроительных заводах, не располагающих жидким чугуном. От скрап-рудного процесса он несколько отличается завалкой и плавлением шихты.
Основной скрап-процесс применяется для выплавки углеродистых и легированных сталей.
Показатели работы мартеновских печей: съем стали с 1 м2 пода печи в сутки и расход топлива на тонну выплавленной стали. На отечественных заводах съем стали составляет около 10 т/м2 в сутки, а расход топлива при скрап-рудном процессе— 120... 180 и при скрап-процессе — 170... 250 кг/т.
Интенсификация мартеновского производства достигается использованием печей большей емкости, хорошей подготовки шихтовых материалов, автоматизации процесса плавки. Повышению производительности печей и экономии топлива способствует применение кислородного дутья. я твердый чугуны, железная руда. В зависимости от их соотношения в шихте различают:
1) скрап-рудный процесс на шихте из жидкого чугуна с добавкой 25...39 % стального скрапа и железной руды;
2) скрап-процесс на шихте из стального лома и 25...45 % чушкового передельного чугуна.
Флюсом в обоих процессах обычно служит известняк СаСО3 (8...12 % от массы металла).
Более широкое применение в металлургии получил скрап-рудный процесс выплавки стали в основной мартеновской печи. Вначале в печь загружают и прогревают железную руду и известняк, затем добавляют стальной скрап и заливают жидкий чугун. В процессе плавки примеси в чугуне окисляются за счет оксида железа руды и скрапа:
3Si + 2Fе2Оз== 3SiO2+ 4Fe; ЗМп + Fе20з== ЗМпО + 2Fe;
6Р + 5Fе2Оз= ЗРзО5+ lOFe; ЗС + Fе20з= ЗСО + 2Fe.
Сера удаляется в результате взаимодействия сернистого железа с известью:
FeS + СаО == FeO + CaS. Оксиды SiO2, MnO, P2O5, CaO, а также сульфид CaS образуют шлак, периодически выпускаемый из печи в шлаковые чаши.
Для интенсификации процесса плавления и окисления примесей ванну продувают кислородом, подаваемым через водоохлаждаемые фурмы. Продувка кислородом позволяет в 2...3 раза сократить длительность процесса, уменьшить расход топлива и железной руды.
После плавления
шихты начинается период кипения
ванны. В это время интенсивно
окисляется углерод в металле. В
момент, когда содержание его достигает
заданного, а количество серы и фосфора
уменьшается до минимума, кипение
прекращают и начинают раскисление
стали в ванне печи ферромарганцем,
ферросилицием и алюминием. Окончательно
сталь раскисляют алюминием и
ферросилицием в
Скрап-процесс применяют на машиностроительных заводах, не располагающих жидким чугуном. От скрап-рудного процесса он несколько отличается завалкой и плавлением шихты.
Основной скрап-процесс применяется для выплавки углеродистых и легированных сталей.
Показатели работы мартеновских печей: съем стали с 1 м2 пода печи в сутки и расход топлива на тонну выплавленной стали. На отечественных заводах съем стали составляет около 10 т/м2 в сутки, а расход топлива при скрап-рудном процессе— 120... 180 и при скрап-процессе — 170... 250 кг/т.
Интенсификация мартеновского производства достигается использованием печей большей емкости, хорошей подготовки шихтовых материалов, автоматизации процесса плавки. Повышению производительности печей и экономии топлива способствует применение кислородного дутья.
3. Разливка стали
Выплавленную в плавильной печи сталь выпускают в сталеразливочный ковш (рис.4) и мостовым краном переносят к месту разливки в слитки. Емкость ковша обычно определяется емкостью плавильной печи и составляет 5...250 т. Для крупных плавильных печей применяют ковши емкостью до 450 т (диаметром и высотой до 6 м).
Сталь разливают
в изложницы или
3.1 Изложницы представляют собой чугунные формы для получения слитков различного сечения. Масса слитков для прокатки обычно составляет 10...12 т (реже —до 25 т), а для поковок достигает 250...300 т. Легированные стали иногда разливают в слитки массой в несколько сотен килограммов.
Применяют два способа разливки стали в изложницы: сверху и сифоном.
При разливке сверху (рис. 5,а) сталь заливают из ковша 2 в каждую изложницу 1 отдельно. При такой разливке поверхность слитков вследствие попадания брызг жидкого металла на стенки изложницы может быть загрязненной пленками оксидов.
При сифонной разливке (рис. 5 ,Б) сталью заполняют одновременно от 2 до 60 установленных на поддоне 5 изложниц через центровой литник 3 и каналы в поддоне. В этом случае сталь поступает в изложницы снизу, что обеспечивает плавное, без разбрызгивания их заполнение, поверхность слитка получается чистой, сокращается время разливки. Сталь в надставке 4 сохраняется в жидком состоянии, благодаря чему уменьшаются раковина и отходы слитка при обрезке.