Проектирование кислородно-конвертерного цеха

Автор работы: Пользователь скрыл имя, 15 Апреля 2014 в 21:29, курсовая работа

Краткое описание

Снабжение железорудным сырьем ОАО «ММК» в настоящее время сориентировано на привозные руды и руды местных месторождений. Потребность ММК в железорудном сырье составляет около 14 млн.т/год. Сырьевой базой ММК на ближайшее время остается рудник Малый Куйбас (общий объем добываемого сырья равен 1,5 млн.т сырой руды в год), рудник горы Магнитной, Качканарское и Лисаковское месторождения. Мощность горно-обогатительного комбината близ Лисаковского месторождения составляет около 35 млн. т/год исходной руды с содержанием железа 47,5 %.

Прикрепленные файлы: 1 файл

Проектирование кислородно-конвертерного цеха.doc

— 418.00 Кб (Скачать документ)

T – эффективная температура, до которой нагревается аргон (обычно ~8000С).

При H = 100 мм расход газа составит:

VAr = 6*104*0,039/8,08 = 289,6 л/мин.

 

 

7 ТЕХНОЛОГИЯ ОБРАБОТКИ  СТАЛИ

 

7.1 Сортамент обрабатываемой  стали

 

Внепечной обработке подвергаются все марки стали, выплавляемые в цехе. Сортамент сталей, выплавляемых на ККЦ №2, будет соответствовать сортаменту сталей, выплавляющихся в пока еще действующем мартеновском цехе №1 ММК и предназначенных, в основном, для получения сортовой заготовки. В данном проекте, на ККЦ №2 ММК предусмотрена выплавка следующих марок стали:

  1. Углеродистая сталь:
  • кипящая обыкновенного качества;
  • кипящая качественная конструкционная;
  • полуспокойная обыкновенного качества;
  • полуспокойная качественная конструкционная;
  • спокойная обыкновенного качества;
  • спокойная качественная конструкционная.
  1. Низколегированная сталь (типа 35…38ХМ, 7ХНМ).
  1. Легированная сталь (типа 25Х1МФ, 20ХГСНМ).
  2. Автоматная сталь (типа А10).

В проектируемом цехе предусмотрены следующие объемы производства по группам марок стали: углеродистой – 85 %, низколегированной – 10 %, легированной – 4 % и автоматной – 1 %.

 

7.2 Технология обработки  стали на установке «печь-ковш»

 

Установка «печь-ковш» (АПК) предназначена для обработки жидкой стали в сталеразливочном ковше, как с использованием установки циркуляционного вакуумирования стали (УЦВС), так и без нее.

На АПК осуществляются следующие технологические операции:

  • продувка металла аргоном для усреднения химического состава и его температуры по всему объему сталеразливочного ковша;
  • коррекция химического состава металла;
  • нагрев металла электрической дугой;
  • десульфурация металла белым основным шлаком;
  • измерение температуры и отбор проб металла и шлака;
  • микролегирование или получение металла с узкими пределами содержания элементов путем ввода порошковой проволоки с различными видами наполнителей.

Контроль над процессом ковшевой обработки производится путем измерения температуры и окисленности металла, отбора проб металла и шлака, измерения расхода и давления аргона для продувки, измерения массы добавок, присаживаемых в ковш, измерения тока и напряжения дуги и других электрических параметров, а также измерения вспомогательных параметров (температура и давление охлаждающей воды, отходящих газов и т.п.) [4].

В зависимости от требований к химическому составу сталей и другим характеристикам, могут использоваться следующие схемы внепечной обработки сталей [24]:

  1. Конвертер – АПК – МНЛЗ.
  2. Конвертер – УЦВС – АПК – МНЛЗ.
  3. Конвертер – АПК – УЦВС – МНЛЗ.

Ферросплавы, используемые на установке «печь-ковш», должны иметь фракцию от 5 до 50 мм, соответствовать требованиям государственных стандартов и технических условий. Влажность не должна быть более 1 %.

Кокс кусковый должен иметь фракцию до 25 мм по СТП 14-101-206-98.

Алюминий для раскисления, легирования и коррекции химического состава стали должен отвечать ТУ 48-0102-49-91, ГОСТ 11070-74 и ГОСТ 295-79 соответственно.

Применяемая известь должна быть только свежеобожженной по СТП ММК 223-99.

Плавиковый шпат должен иметь влажность не более 1 % и соответствовать ГОСТ 29220-91.

Подаваемый аргон должен иметь массовую долю аргона не менее 99,5 % и отвечать требованиям ГОСТ 10157-79. Давление аргона в сети – не менее 10 кг/см2 (1 МПа).

Азот газообразный должен соответствовать ГОСТ 9293-74.

Применяемые пробоотборники должны соответствовать ТУ 311-00226253.046-94.

Термопары – ТУ 311-0226258.017.

Применяются датчики окисленности жидкого металла типа «Celox»

Перед обработкой металла на установке необходимо обеспечить:

  • заполнение бункеров необходимыми материалами, соответствующим требованиям ГОСТов;
  • наличие средств отбора проб металла, измерения температуры и окисленности;
  • подачу газов необходимого давления;
  • подачу воды на охлаждение элементов установки до требуемых параметров;
  • исправность работы систем продувки металла аргоном;
  • исправность работы газоотводящего тракта;
  • исправность работы всех механизмов, систем контроля, управления, сигнализации и блокировок;
  • исправность работы пневмопочты;
  • проверку длины электродов и по необходимости их наращивание.

Технология обработки металла на АПК по схеме «Конвертер – АПК – МНЛЗ», сводится к следующему:

  • плавка, предназначенная для обработки на АПК, сливается в сталеразливочный ковш, специально оборудованный для донной продувки. Ковш должен иметь исправную сухую футеровку. Верхний край ковша должен быть чистым;
  • раскисление, легирование и обработка металла твердыми шлакообразующими смесями во время выпуска плавки из конвертера производится согласно имеющейся в цехе технологической инструкции. Легирующие присаживаются из расчета получения содержания Si, Mn, Al на нижнем пределе;
  • производится качественная отсечка конвертерного шлака во время выпуска металла в сталеразливочный ковш;
  • уровень налива металла в ковше должен быть 400…1000 мм от верхней кромки ковша (величина уровня налива может уточняться в процессе освоения технологии);
  • поступивший из конвертерного отделения сталеразливочный ковш устанавливается на сталевоз агрегата «печь-ковш». К продувочным устройствам подсоединяются аргонные шланги, включается подача аргона с расходом 15…30 м3/ч на каждое из продувочных устройств (расход аргона может уточняться в процессе освоения технологии);
  • сталевоз передвигается под крышку АПК, после чего крышка опускается. Через рабочее окно производится корректировка интенсивности продувки. Расходы аргона должны обеспечивать минимальное оголение поверхности металла;
  • через 1…2 минуты продувки производится измерение температуры и окисленности метала. На основании показаний содержания кислорода в металле вводится расчетное количество алюминиевой катанки для предварительного раскисления металла. Ориентировочный расход алюминия приведен в табл. 7.1.;
  • при проведении процесса десульфурации металла в ковше должен быть наведен белый высокоосновный жидкоподвижный шлак. Для этого в ковш присаживается известь и плавиковый шпат в соотношении 4:1. Расход шлакообразующих материалов может составлять до 10 кг/т (расход уточняется в процессе освоения технологии). Материалы вводятся порциями не более 150 кг;
  • для нагрева металла и расплавления шлака электродный портал поворачивается в исходную позицию и производится включение установки на 5 минут на средней ступени нагрева;
  • после расплавления жидкий шлак раскисляется присадкой алюминия в количестве 50…100 кг (уточняется исследованиями);
  • после окончания процесса нагрева, через 3 минуты перемешивания металла аргоном, производится измерение температуры металла и отбираются пробы металла и шлака и отправляются в экспресс-лабораторию. Проба шлака берется с помощью металлической трубки-стержня через рабочую дверцу, далее она охлаждается и анализируется визуально по цвету и поверхности. Цвет шлака меняется по степени его окисленности (содержания FeO) от черного к белому. Появление белого шлака в ковше означает, что шлак нормально подготовлен для проведения процесса десульфурации стали. При отклонении цвета и поверхности шлака от рекомендуемых, необходимо принять меры по исправлению химического состава шлака. Ориентировочный визуальный анализ состава шлака и способы его исправления представлены в табл. 7.2. Для обеспечения наилучшего результата десульфурации стали в ковше, содержание в шлаке (FeO)+(MnO) должно быть менее 1,5 %. Оптимальный состав ковшевых шлаков для проведения десульфурации представлен в табл. 7.3.;
  • после получения результатов химического анализа металла производится корректировка его химического состава добавлением необходимого количество ракислителей и легирующих материалов из расчета получения среднего содержания элементов. Затем металл перемешивается аргоном не менее 5 минут. Для интенсификации растворения ферросплавов расход аргона разрешается увеличить до 30…40 м3/ч (уточняется в процессе исследований);
  • не ранее чем через 5 минут продувки, после присадки ферросплавов измерить температуру металла и отобрать пробы металла и шлака. До получения результатов экспресс-анализа производить перемешивание металла аргоном с расходом 10…20 м3/ч (уточняется исследованиями);
  • при получении результатов химического анализа в случае необходимости произвести дополнительную корректировку химического состава металла;
  • легкоокисляющиеся элементы вводятся в ковш только после окончания последнего цикла нагрева. В стали, с оговоренным содержанием кальция, вводят трайб-аппаратом порошковую SiCa или AlCa проволоку без продувки аргоном для достижения максимально высокого усвоения элементов. Если наблюдается белое пламя над шлаком, то необходимо увеличить скорость ввода порошковой проволоки;
  • если температура металла ниже указанной для МНЛЗ, то необходимо произвести дополнительный нагрев;
  • при необходимости охлаждения металла, охлаждение производить слябом;
  • через 3 минуты после окончания последнего цикла нагрева произвести замер температуры и отбор пробы металла. После достижения необходимого химического состава и заданной температуры электродный портал поворачивается в другую сторону. Крышка АПК поднимается, сталевоз с ковшом выдвигается из-под агрегата, отсоединяется аргонный шланг и далее ковш передается на МНЛЗ.
Обработка стали по схеме «Конвертер – УЦВС – АПК – МНЛЗ»:
  • перед подачей плавки на агрегат «печь-ковш» металл подвергается обработке на установке циркуляционного вакуумирования стали в соответствии с имеющейся в цехе инструкцией по внепечному вакуумированию жидкой стали;
  • после окончания вакуумной обработки ковш передают на АПК и проводят внепечную обработку в соответствии с вышеизложенной схемой;
  • при обработке сталей с низким и особонизким содержанием углерода следует учитывать возможное науглероживание металла от электродов.

Обработка стали по схеме «Конвертер – АПК – УЦВС – МНЛЗ» производится при необходимости вакуумной обработки металла с целью дегазации. При этом обработка плавки на АПК производится согласно вышеописанной, первой схеме обработки металла, затем металл обрабатывается на УЦВС в соответствии с технологической инструкцией по вакуумированию стали в цехе.

При невозможности продувки металла аргоном через донные фурмы, необходимо:
  • проверить все соединения трубопроводов, по которым подается аргон. При наличии утечек аргона их устранить;
  • дать максимальный расход аргона через 'байпас'. Если 'раздутия' пробки не произошло, то необходимо продувку аргоном производить аварийной верхней фурмой;
  • по окончании усреднительной продувки, поднять фурму и произвести замер температуры и окисленности, также отобрать пробы металла и шлака. Пробы направляются в экспресс-лабораторию (проба шлака оценивается визуально);
  • после отбора проб и замере температуры, по необходимости осуществляется ввод шлакообразующих материалов, затем опускаются электроды, и в течение 4…6 мин производится нагрев металла. Одновременно с нагревом производится продувка металла аргоном через аварийную фурму с максимальным ее заглублением. Расход аргона должен обеспечивать минимальное волнение поверхности металла;
  • затем производится измерение температуры и отбор проб металла и шлака;
  • после получения результатов экспресс-анализа в металл вводится в необходимом количестве ферросплавы;
  • окончание обработки производится по описанной выше технологии.

Таблица 7.1

Ориентировочный расход алюминия для раскисления металла

Содержание кислорода в металле, ppm

100

200

300

400

500

600

700

800

900

1000

Расход алюминия, кг

40

80

120

160

200

240

280

320

360

400


 

Таблица 7.2

Визуальный анализ состава ковшевого шлака

По цвету

Черный

Содержание (FeO+MnO)>2%. Шлак необходимо дополнительно раскислить Al или Si.

Серый

Содержание (FeO+MnO)=1…2 %. Необходимо дальнейшее раскисление шлака Al или Si.

Белый – желтый

Шлак нормально раскислен. Желтый цвет указывает, что десульфурация прошла.

По цвету

Зеленый

Шлак содержит оксид хрома (Сr2O3).

По поверхности

Зеркальная – гладкая, тонкая

Высокая доля (SiO2, Al2O3). Необходима добавка извести порциями по 0,4 кг/т.

Гладкая и толстая

В холодном состоянии шлак должен распадаться. Если он не распадается, то высокая доля (Al2O3). Необходима добавка порций извести по 0,4 кг/т.

Шероховатая, неровная

Высокая доля (CaO). Если имеются нерастворенные частицы извести, то необходима добавка песка (SiO2) или глинозема (Al2O3) порциями не более 0,1 кг/т.


 

Таблица 7.3

Оптимальный химический состав ковшевых шлаков для десульфурациии стали

Компонент

Содержание в шлаке, %

Сталь, раскисленная кремнием

Сталь, раскисленная алюминием

CaO

55…65

55…65

SiO2

20…30

5…10

Al2O3

5…10

20…30

MgO

4…5

4…5

FeO+MnO

1

0.5


 

7.3 Технология обработки стали на установке

вакуумирования циркуляционного типа

 

Процесс циркуляционного вакуумирования заключается в обработке вакуумом металла, непрерывно текущего через вакуумкамеру по двум патрубкам, опущенным в сталеразливочный ковш с расплавом. Для обеспечения непрерывного подъема металла в камеру в один из патрубков подается аргон, пузырьки которого в результате большой разницы плотностей , поднимаясь вверх по патрубку, увлекают за собой расплав выполняя функции транспортирующего газа. В камере металл дегазируется и, становясь более плотным и тяжелым, сливается по второму патрубку в ковш.

Во время прохождения жидкого метала через вакуумкамеру под действием разрежения, создаваемого пароэжекторным насосом, происходят процессы удаления из стали растворенных газов (кислорода, водорода, частично азота), углеродное раскисление или обезуглероживание стали. Выделяющиеся в вакуум пузыри моноокиси углерода и инертного газа (аргона), приводят к интенсивному диспергированию металла и интенсификации процессов дегазации и перемешиванию стали в вакуумкамере. Вследствие повышения раскислительной способности углерода при низких парциальных давлениях моноокиси углерода, значительная часть кислорода (до 60 %) удаляется из стали в виде СО, что повышает чистоту металла по содержанию в нем неметаллических включений и уменьшает угар элементов-раскислителей, вводимых в сталь. Снижение активности кислорода в металле при вакуумировании, наряду с интенсивным перемешиванием жидкой стали в вакуумкамере, способствует лучшему усвоению присаживаемых добавок [27].

С целью увеличения срока службы вакуумной камеры и патрубков, в начале обработки и за 1 минуту до окончания вакуумирования на поверхность металла в вакууматоре через вакуумный шлюз подают порцию нейтрализатора шлака в количестве 50…100 кг. В качестве нейтрализатора шлака применяют брикеты на основе глинозема (Al2O3).

Для снижения тепловых потерь металла при вакуумировании и улучшения условий службы огнеупоров, футеровка вакуумкамеры постоянно поддерживается в разогретом состоянии (1450…15000С) за счет теплоизлучения графитового нагревателя, являющегося резисторным элементом электрической системы разогрева вакуумкамеры. С целью уменьшения эрозии футеровки вакуумкамеры и патрубков, в периоды между обработками плавок на УЦВС, объем вакуумкамеры заполняется азотом, а патрубки погружаются в песок.

Ферросплавы, используемые на установке циркуляционного вакуумирования стали, должны иметь фракцию от 5 до 50 мм и соответствовать требованиям государственных стандартов и технических условий. Влажность не должна превышать 1 %.

Применяемый на установке нейтрализатор шлака должен отвечать требованиям СТП-101-73-89.

Информация о работе Проектирование кислородно-конвертерного цеха