Подготовка рудных материалов

Автор работы: Пользователь скрыл имя, 05 Ноября 2013 в 16:28, реферат

Краткое описание

Изучение перечисленных факторов начинается еще в процессах разведки и продолжается весь период эксплуатации месторождения с целью непрерывного совершенствования техники и повышения показателей обогащения.
Цель работы: ознакомление с технологиями, оборудованием, его конструкцией и принципом работы.

Содержание

ВВЕДЕНИЕ…………………………………………3
1. Добыча руд………………………………………5
2. Дробление, измельчение руд…………………...7
3. Грохочение и классификация руд……………..11
4. Способы обогащения руд………………………14
5. Обжиг концентратов……………………………22
6. Окускование концентратов ……………………23
7. Топливо и огнеупоры…………………………...39
Библиографический список……………………….45

Прикрепленные файлы: 1 файл

РЕФЕРАААТ!!!!.doc

— 634.00 Кб (Скачать документ)
      1. Грохочение и классификация руд

Разделение или сортировку материалов на классы крупности при  помощи решеток или механических сит называют грохочением, а разделение в воде или воздухе на основе разности скоростей падения зерен различной крупности — гиравлической или воздушной классификацией. Грохочением обычно разделяют материалы до крупности 1—3 мм, а более мелкие -классификацией.

Материал, поступающий  на грохочение, называют исходным, остающийся на сите — надрешетным продуктом, прошедший через отверстия сита — подрешетным продуктом.

Аппараты для грохочения называют грохотами, их основным рабочим элементом является решето или сито. Наибольшее распространение получили различные грохоты с колебательным движением решета; ограниченное применение находят неподвижные грохоты, а также барабанные, валковые или роликовые.

Простейшим и малопроизводительным является неподвижный колосниковый грохот, применяемый в приемных отделениях горно-рудных предприятий. Он представляет собой расположенную  под  углом  ~ 45° к  горизонту  решетку  из  параллель стальных брусьев (колосников) с величиной щели 25—200 мм. Подаваемый сверху материал опускается по поверхности решетки, а мелочь просыпается сквозь щели решетки. Производительность грохота составляет 9—80м3/ч на 1 м2 решетки, а к.п.д. не превышает 50—70 %.

Дуговой гидравлический неподвижный грохот представляет собой  изогнутую по дуге решетку, по которой  сверху движется пульпа; через ячейки решетки проходят отделяемые частицы пульпы размером 0,3—1,0 мм. Придание решету грохота колебательных движений сильно повышает производительность и к.п.д. грохота (до 95—98 %). Из подобных грохотов в последнее время широко применяют самобалансные и самоцентрирующиеся инерционные грохоты. Самобалансный грохот (рис. 5) представляет собой опирающийся на пружины 3 короб 1 с просеивающим решетом 2. В боковых стенках короба на подшипниках установлены два дебалансных вала 4 (ось вала не совпадает с осью его вращения). Валы вращают с одинаковой скоростью в противоположных направлениях, при этом возникают инерционные силы, вызывающие колебания короба по направлению стрелок "А", что обеспечивает подбрасывание груза и его перемещение вдоль решета с эффективным просеиванием мелочи.

Для самобалансных грохотов частота колебаний составляет 740-950 в минуту, амплитуда колебаний 4-9 мм, размеры решета достигают 3x6,4 м, производительность — 600 т/ч.

 

Самоцентрирующийся инерционный  грохот показан на рис. 6.

Грохот состоит из подвешенного на пружинах 4 короба 1 с одним или двумя ситами 2. В подшипниковых опорах короба закреплен вращаемый приводом через шкив 6 эксцентриковый вал 5, на концах которого имеются диски 3 с противовесами (дебалансами) 7. Вращение вала с дебалансами вызывает перемещение короба по круговой траектории вокруг оси вала с амплитудой 3—6 мм. Частота составляет 520—1440 колебаний в минуту, производительность грохотов 2000 т/ч.

Гидравлическая  классификация (разделение) тонкоизмель-ченных руд основана на том, что в воде более крупные частицы оседают быстрее, чем мелкие. Существует несколько разновидностей гидравлических классификаторов, наиболее распространенным является спиральный классификатор. Он выполнен в виде наклонного желоба, внутри которого расположены продольные вращающиеся двухзаходные спирали. В желоб подают рудную пульпу; крупные частицы оседают на дне желоба и выносятся из желоба через его верх вращающимися спиралями, а мелкие частицы с водой сливаются из нижнего конца желоба. В маловодных районах применяют воздушную классификацию.

 

4. Способы обогащения  руд

Руды, добываемые из недр земли, часто не удовлетворяют требованиям  металлургического производства не только по крупности, но и в первую очередь по содержанию основного  металла и вредных примесей, а потому нуждаются в обогащении.

Под обогащением руд  понимают процесс обработки полезных ископаемых, целью которого является повышение содержания полезного компонента путем отделения рудного минерала от пустой породы или отделения одного ценного минерала от другого. В результате обогащения получают готовый продукт — концентрат, более богатый по содержанию определенного металла, чем исходная руда, и остаточный продукт — хвосты, более бедный, чем исходная руда.

Все применяемые на практике способы обогащения руд основаны на (использовании различий в физических и физико-химических свойствах слагающих руду минералов. При хорошей размываемости минерала водой применяют промывку; при различной  плотности —  гравитационное  обогащение,  при  магнитной восприимчивости — магнитное обогащение, на использовании различных физико-химических поверхностных свойств основана флотация. Выбирая оптимальный способ обогащения, оценивают также экономическую эффективность того или иного способа.

Конечный результат обогащения характеризуют степенью извлечения (е, %) полезного элемента, которую определяют из соотношения: с = (ур)/а, где у- выход концентрата (% от массы исходной руды), аир— соответственно содержание извлекаемого элемента в исходной руде и в концентрате, %.

•Промывка. Промывка представляет собой процесс разрушения и диспергирования глинистых и песчаных пород, входящих в состав руды. Ее применяют для руд с плотными разновидностями рудных минералов, не размываемых водой, и с рыхлой пустой породой. К ним чаще всего относятся буро-железняковые и мартитовые руды, а также многие марганцевые руды.

При обогащении промывкой  потоки воды размывают и уносят глинистые и песчаные частицы, а также мелкую руду, поэтому промывке обычно подвергают крупнокусковые руды, а мелкие классы направляют на дальнейшее обогащение другими методами.

Основными агрегатами для  обогащения промывкой служат бутары, скрубберы, корытные мойки и промывочные  башни.



Бутара представляет собой вращающийся  цилиндр с решетчатой поверхностью (рис. 7).

 

 

 

 

 

 

 

 

Руда внутри барабана продвигается вперед, скользя и перекатываясь по его стенкам. Ввиду наличия коротких уголков, укрепленных внутри бутары под прямым углом к направлению скольжения, куски руды разбиваются.   Разрыхлению  способствует  вода,  подаваемая  из оросительной трубы, расположенной вдоль барабана. Вода с растворенной частью пустой породы и мелкими зернами руды проходит через отверстия бутары, а крупный отмытый материал удаляется через разгрузочный конец. Производительность бутары 150—190 т/ч.

Основной недостаток—  высокий расход воды, составляющий 3—5 м3 на 1т материала. Выход годного продукта равен примерно 75 % при относительно высоком содержании железа в хвостах (25-26%).

 •Гравитация. При гравитационном обогащении минералы разделяются по плотности. Гравитация может быть воздушной или мокрой.

Воздушную гравитацию для  обогащения железных и марганцевых  руд не применяют, поскольку их рудные и нерудные минералы сравнительно мало отличаются по плотности. Мокрую гравитацию чаще всего осуществляют отсадкой. В качестве жидкости обычно используют воду, но применяют и более тяжелые среды.

Сравнительно простой  и совершенный способ — это  гравитационное обогащение в тяжелых средах. Руду погружают в жидкость, плотность которой больше плотности пустой породы. Тяжелые зерна рудного минерала осаждаются на дно, а частицы пустой породы всплывают.

При обогащении железных руд плотность жидкости должна составлять около 2800—3000 кг/м3. Органические жидкости с такой плотностью стоят дорого, поэтому применяют тяжелые суспензии — взвеси тонкого порошка какого-либо твердого тела, например ферросилиция (для обогащения железных руд) или свинцового блеска (для обогащения руд цветных металлов). Для того чтобы плотность была неизменной в любой части аппарата, суспензия должна находиться в непрерывном движении.  Кроме того, чтобы уменьшить скорость осаждения ферросилиция, к суспензии добавляют глинистую породу — бентонит. Тяжелые суспензии применяют главным образом для обогащения руд цветных металлов; в этом случае используют конусные сепараторы различных конструкций.

Для гравитационного  обогащения применяют сепараторы или  спиральные классификаторы. Широко используют барабанный сепаратор, показанный на рис. 10.

Рис. 10. Барабанный сепаратор  для гравитационного обогащения руд

Сепаратор состоит из наклонного барабана 5 диаметром 1,5-3 и  длиной 3—10 м со спиралями 4 и кольцевым черпаковым элеватором 3. Руда поступает по желобу б, концентрат оседает в среде, передвигается спиралями 4 и разгружается черпаковым элеватором 3 по желобу 1. Всплывшая легкая фракция переливается через горловину 7. Расход суспензии восполняется через питатель 2.

•Магнитная сепарация. Наиболее распространенным способом обогащения железных руд является магнитная сепарация, основанная на различии магнитных свойств железосодержащих минералов и частиц пустой породы.

Магнитное обогащение заключается  в том, что подготовленную соответствующим образом руду (дробленую до высокой степени раскрытия рудного зерна), содержащую магнитный минерал, вводят в магнитное поле, создаваемое магнитами. Силовые линии магнитного поля сгущаются в зернах магнитного минерала, намагничивают их, вследствие чего зерна притягиваются магнитом и, преодолевая постояннодействующие силы (тяжести, центробежные, сопротивления водной среды и др.), движутся в одном направлении, в то время как немагнитные зерна под действием этих сил движутся в другом направлении.

Магнитное обогащение осуществляют в аппаратах, называемых магнитными сепараторами, в которых магнитное поле создается электромагнитами постоянного тока или магнитными системами, состоящими из постоянных магнитов.

В зависимости от минералогического состава руд применяют сепараторы с разной напряженностью магнитного поля. Сильномагнитные руды обогащают на сепараторах, в которых создается меньшая напряженность магнитного поля (40-100 кА/м), а для слабомагнитных руд требуется высокая напряженность магнитного поля (160—1600 кА/м).

Магнитное обогащение железных руд осуществляют методами мокрой и сухой магнитной сепарации, а  также комбинированными методами (сухая сепарация с последующей мокрой).

Для обогащения магнитных  железных руд крупностью более 3-6 мм применяют только сухую магнитную сепарацию; руды меньшей крупности можно обогащать как сухим, так и мокрым методами, но применяют в основном мокрую сепарацию, поскольку при этом устраняется пыление. Для руд крупностью менее 0,1 мм применяют только мокрую сепарацию.

По конструктивным признакам различают  сепараторы барабанные, ленточные, шкивные, роликовые и кольцевые. Наибольшее распространение для обогащения магнетитовых руд получили барабанные сепараторы. Схема устройства и работы барабанного сепаратора для сухого обогащения показана на рис. 11.

Рис.11

 

Внутри вращающегося барабана  из немагнитной стали  закреплены неподвижные электромагниты 2. Обогащаемую руду подают на барабан сверху; частицы магнетита притягиваются электромагнитом к поверхности барабана и перемещаются на ней до выхода из зоны действия магнита. Здесь они под действием силы тяжести падают вниз в приемный бункер концентрата. Немагнитные частицы ссыпаются с барабана там, где его поверхность перестает быть опорой частиц (крайнее правое положение), они попадают в бункер пустой породы (хвостов).

Барабанные сепараторы для мокрого обогащения в зависимости от направления подачи рудного материала и его движения по отношению к направлению вращения барабана подразделяют (рис. 12) на три типа:

с прямоточной, противоточной и полупротивоточной ваннами. Барабанный сепаратор с прямоточной ванной (рис. 12, а) применяют для обогащения руд крупностью 0—6 мм.


 

 

 

Рис. 12. Схема барабанных сепараторов  для мокрого обогащения руд



 

 

Он включает вращающийся немагнитный барабан 2 с расположенными внутри него неподвижными электромагнитами 3. Рудную пульпу через загрузочную коробку 1 по лотку 9 подают под барабан в направлении, совпадающем с направлением его вращения. Магнитные частицы руды притягиваются к барабану и удерживаются на его поверхности   до   выхода   из   зоны   действия   магнитов,   после чего они под действием сил тяжести, гидросмыва 4 и щетко-снимателя 5 попадают в разгрузочный лоток 7 концентрата. Пустая порода остается в ванне 8 и удаляется в виде хвостов. Постоянный уровень пульпы в ванне обеспечивается за счет слива ее избытка через патрубок 10. Барабан имеет резиновое покрытие 6.

Сепараторы с противоточной  ванной (рис. 12,6) применяются для обогащения мелкозернистой (0—2 мм) руды. Рудную пульпу подают по питающему лотку 12 навстречу направлению вращения барабана. Частицы магнетита извлекаются барабаном из ванны в противотоке и в месте окончания зоны действия магнитов 3 выдаются через сливной порог 11 в лоток 7 концентрата. Пустая порода с водой проходит под барабаном и удаляется из ванны с противоположной от места выдачи концентрата стороны (хвосты).

Сепараторы с полупротивоточной  ванной (рис.12, в) применяются для  обогащения тонкозернистых руд (частицы < 0,2 мм). Пульпа подается к вращающемуся барабану 2 снизу. Притягиваемые к барабану магнитные частицы разгружаются по ходу вращения барабана через лоток 7, а пустая порода (хвосты) под действием потока воды удаляется с противоположной стороны через сливной порог 11.

Для слабомагнитных руд (гематит и др.) перспективным способом повышения магнитных свойств до уровня, необходимого для их обогащения на простых магнитных сепараторах долгое время считался магнетизирующий обжиг. Он заключается в том, что железную руду нагревают во вращающейся трубчатой печи или печи кипящего слоя до 600—800 °С в восстановительной атмосфере; при этом Fe2Os восстанавливается до Fe304, обладающего высокими магнитными свойствами. Но после многолетнего, опробования от этого способа в настоящее время отказались в связи со сложностью, высокой стоимостью и загрязнением окружающей среды выбросами обжиговых печей.

Для обогащения слабомагнитных руд ограниченное применение находят валковые сепараторы с сильным магнитным полем, в них пульпа проходит через создаваемое между двумя магнитными Полюсами поле напряженностью ~ 1300 кА/м. Однако эти сепараторы сложны по устройству и малопроизводительны. Для тонкоизмельченных слабомагнитных руд (крупность    частиц    < 0,8 мм)    применяются    полиградиентные сепараторы сильного магнитного поля, в которых рабочее пространство между магнитными полюсами заполнено, например, стальными шарами. В точке касания шаров создается очень высокая напряженность магнитного поля, и при пропускании через него пульпы из нее выпадает выделяемый минерал.

Информация о работе Подготовка рудных материалов