Особенности работы режущих инструментов и их конструкции

Автор работы: Пользователь скрыл имя, 18 Марта 2014 в 16:07, реферат

Краткое описание

Металлорежущий инструмент является одним из важнейших орудий производства. Он используется при обработке резанием всевозможных деталей на металлорежущих станках. При этом срезается часть материала заготовки в виде стружки до получения требуемой поверхности детали.
В настоящее время в машиностроении используется большое количество разнообразных режущих инструментов.
На заре развития человеческой культуры одними из первых орудий, которыми пользовались люди в процессе своего труда, были каменные орудия. Уже в эпоху неолита человек достиг большого мастерства в изготовлении самых разнообразных каменных орудий: скребков, резцов, наконечников, иголок, кинжалов, топоров, молотков, долот, мотыг, серпов, напильников.

Прикрепленные файлы: 1 файл

Реферат-конспект.docx

— 418.50 Кб (Скачать документ)

Режущий инструмент

Металлорежущий инструмент является одним из важнейших орудий производства. Он используется при обработке резанием всевозможных деталей на металлорежущих станках. При этом срезается часть материала заготовки в виде стружки до получения требуемой поверхности детали.

В настоящее время в машиностроении используется большое количество разнообразных режущих инструментов.

На заре развития человеческой культуры одними из первых орудий, которыми пользовались люди в процессе своего труда, были каменные орудия. Уже в эпоху неолита человек достиг большого мастерства в изготовлении самых разнообразных каменных орудий: скребков, резцов, наконечников, иголок, кинжалов, топоров, молотков, долот, мотыг, серпов, напильников.

Каменные орудия были хрупкими, они часто ломались, а расширявшаяся производственная деятельность людей требовала более прочных орудий. Поэтому в 3—1 тысячелетиях до н. э. на смену камню пришли медь, олово и бронза. Орудия, изготовленные из бронзы, были прочными, но им недоставало твердости и остроты каменного орудия. Поэтому бронза не могла вытеснить каменные орудия.

Развитие ремесла настоятельно требовало создания такого материала, который сочетал бы в себе прочность бронзы и твердость камня. Таким материалом явилось железо. Оно дало ремесленнику орудия такой твердости и остроты, которым не мог противостоять ни один камень, ни один из известных тогда металлов.

Резкий скачок в развитии производительных сил общества мы наблюдаем при переходе от мануфактурного производства к машинной индустрии, это было связано с переходом от ручного труда к машинному, с передачей механизму функций непосредственного воздействия на предмет труда.

Переход к машинной индустрии привел к чрезвычайно бурному развитию инструментов и созданию новых их типов.

Во второй половине XIX века появляются такие инструменты, как спиральное сверло, развертка, зенкер, разнообразные фрезы, в том числе затыло-ванные фасонные фрезы для обработки зубчатых колес. В конце XIX и начале XX веков стали использоваться в производстве такие сложные инструменты, как червячные фрезы, зуборезные долбяки, гребенки и др. Двадцатые годы XX века характеризуются внедрением такого инструмента, как протяжка, которая в настоящее время находит широкое применение в силу высокой производительности и качества обработки. В этот же период начинают применять всевозможные комбинированные инструменты, наборы ннструмеитов, позволяющие совмещать различные операции.

Режущий инструмент является важнейшим элементом техники различных отраслей машиностроительной промышленности. На протяжении всей истории техники усовершенствования режущего инструмента оказывали большое влияние на конструкцию металлорежущих станков и технологию машиностроения.

Успешное развитие любого машиностроительного производства в значительной степени зависит от того, насколько оно обеспечено надлежащим количеством высококачественного инструмента.

 

Резцы

Одним из наиболее простых и распространенных металлорежущих инструментов является резец. Резцы применяются на токарных, расточных, строгальных и других станках. В зависимости от вида станка и рода выполняемой работы применяются резцы различных типов. Ниже изображены основные типы токарных резцов.

Для обточки наружных поверхностей вращения, т. е. цилиндрических валиков, конических поверхностей большой длины и им подобных деталей, применяют проходные резцы. Проходные резцы бывают прямые (а) и отогнутые (б). Отогнутые резцы получили широкое применение из-за их универсальности, большей жесткости, возможности вести обработку в менее доступных местах.

Отогнутыми резцами можно работать при продольной и поперечной подачах и вести обточку поверху, подрезку торцов, снятие фасок. Проходные резцы могут быть черновые и чистовые. Чистовые резцы имеют больший радиус закругления, что обеспечивает получение более чистой обработанной поверхности. Если необходимо получить особенно чистую и гладкую поверхность, применяют широкие лопаточные резцы. Эти резцы работают с большой подачей. Однако при значительной длине контакта режущей кромки с заготовкой они склонны к вибрациям, дрожанию.

Проходные упорные резцы (в) имеют угол в плане 90° и применяются при обточке ступенчатых валиков и подрезке буртиков, а также при точении нежестких деталей.

Подрезные резцы предназначаются для обточки плоскостей, перпендикулярных оси вращения, подрезки торцов на проход (г). Эти резцы работают с поперечной подачей. Расточные резцы служат для обработки отверстий (д, е). Они работают в менее благоприятных условиях, чем проходные резцы для наружной обточки. Расточные резцы должны иметь меньшие поперечные размеры, чем обрабатываемое отверстие. Они получаются длинными. Вылет резца должен быть больше длины растачиваемого отверстия. В силу малой жесткости расточные резцы склонны к вибрациям, что не дает возможности снимать стружку большого сечения.

 

Конструктивные элементы и геометрические параметры проходных токарных резцов

Из всех видов токарных резцов наиболее распространенными являются проходные резцы. Они предназначены для точения наружных поверхностей, подрезки торцов, уступов и т.д.

Призматическое тело npoходного резца (рис. 1), как и любого другого, состоит из режущей части (головки) и державки. Головка резца содержит переднюю 1, главную заднюю 2 и вспомогательную заднюю 3 поверхности. Пересечения этих поверхностей образуют главную 4 и вспомогательную 5 режущие кромки.

Рис. 1. Конструктивные элементы токарного резца:

1 – передняя поверхность; 2 –  главная задняя поверхность;  
3 – вспомогательная задняя поверхность; 4 – главная режущая кромка;  
5 – вспомогательная режущая кромка

По передней поверхности сходит снимаемая резцом стружка. Главная задняя поверхность обращена к поверхности резания, образуемой главной режущей кромкой, а вспомогательная задняя поверхность – к обработанной поверхности детали.

Указанные поверхности и режущие кромки после заточки располагаются под определенными углами относительно двух координатных плоскостей и направления подачи, выбираемыми с учетом кинематики станка.

За координатные плоскости (рис. 2) принимают две взаимно перпендикулярные плоскости:

1) плоскость резания, проходящую  через главную режущую кромку, и вектор скорости резания, касательный  к поверхности резания;

2) основную плоскость, проходящую  через эту же кромку и нормаль  к вектору скорости резания.

Есть другое определение основной плоскости: это плоскость, проходящая через векторы продольной Sпр и радиальной Sр подач; в частном случае может совпадать с основанием резца, и в этом случае возможно измерение углов резца вне станка в его статическом положении.

Рис. 2. Геометрические параметры проходного токарного резца

За вектор скорости резания, применительно к резцам, а также ко многим другим инструментам, принимают вектор окружной скорости детали без учета вектора продольной подачи, который во много раз меньше вектора окружной скорости и не оказывает заметного влияния на величину передних и задних углов. Только в отдельных случаях, применительно, например, к сверлам, в точках режущих кромок, прилегающих к оси сверла, это влияние становится существенным.

На рис. 2 представлены вид заготовки и резца в плане и геометрические параметры, обязательно указываемые на рабочих чертежах резцов: γ, α, α1, φ, φ1. Ниже даны определения и рекомендации по назначению их величин.

Передний и задний углы главной режущей кромки принято измерять в главной секущей плоскости N–N, проходящей нормально к проекции этой кромки на основную плоскость, которая в данном случае совпадает с плоскостью чертежа. Плоскость N–N выбрана в связи с тем, что именно в ней происходит деформация металла при резании.

Передний угол γ – это угол между основной плоскостью и плоскостью, касательной к передней поверхности. Величина этого угла оказывает на процесс резания определяющее влияние, так как от него зависят степень деформации металла при переходе в стружку, силовая и тепловая нагрузки на режущий клин, прочность клина и условия отвода тепла из зоны резания. Оптимальное значение переднего угла γ определяется опытным путем в зависимости от физико-механических свойств обрабатываемого и режущего материалов, факторов режима резания (V, S, t) и других условий обработки. Возможные значения угла γ находятся в пределах 0...30°. Для упрочнения режущего клина, особенно изготовленного из хрупких режущих материалов, на передней поверхности затачивают фаску с нулевым или отрицательным передним углом (γф = 0...–5°), шириной f, зависящей от подачи.

Задний угол α – это угол между плоскостью резания и плоскостью, касательной к задней поверхности. Фактически это угол зазора, препятствующего трению задней поверхности резца о поверхность резания. Он влияет на интенсивность износа резца и в сочетании с углом γ влияет на прочность режущего клина и условия отвода тепла из зоны резания.

Чем меньшую нагрузку испытывает режущий клин и чем он прочнее, тем больше значение угла a, величина которого зависит, таким образом, от сочетания свойств обрабатываемого и режущего материалов, от величины подачи и других условий резания. Например, для резцов из быстрорежущей стали при черновой обработке конструкционных сталей α = 6...8°, для чистовых операций α = 10...12°.

Угол наклона главной режущей кромки λ – это угол между основной плоскостью, проведенной через вершину резца, и режущей кромкой. Он измеряется в плоскости резания и служит для предохранения вершины резца А от выкрашивания, особенно при ударной нагрузке, а также для изменения направления сходящей стружки. Угол λ считается положительным, когда вершина резца занижена по сравнению с другими точками главной режущей кромки и в контакт с заготовкой включается последней. Стружка при этом сходит в направлении обработанной поверхности (от точки В к точке А), что может существенно повысить ее шероховатость. При черновой обработке это допустимо, так как после нее следует чистовая операция, снимающая эти неровности. Но при чистовых операциях, когда нагрузка на режущий клин невелика, первостепенное значение приобретает задача отвода стружки от обработанной поверхности. С этой целью назначают отрицательные значения угла (–λ). При этом вершина резца А является наивысшей точкой режущей кромки, а стружка сходит в направлении от точки А к точке В.

Наличие угла λ усложняет заточку резцов, поэтому практические значения этого угла невелики и находятся в пределах λ = +5…–5°.

Углы в плане φ и φ1 (главный и вспомогательный) – это углы между направлением продольной подачи Sпр и, соответственно, проекциями главной и вспомогательной режущих кромок на основную плоскость.

Главный угол в плане φ определяет соотношение между толщиной и шириной срезаемого слоя. При уменьшении угла φ стружка становится тоньше, улучшаются условия теплоотвода и тем самым повышается стойкость резца, но при этом возрастает радиальная составляющая силы резания.

При обточке длинных заготовок малого диаметра вышесказанное может привести к их деформации и вибрациям, и в этом случае принимается φ = 90°.

Для других случаев рекомендуется:

– при чистовой обработке φ = 10...20°;

– при черновой обработке валов (l/d = 6...12) φ = 60...75°;

– при черновой обработке более жестких заготовок φ = 30...45°.  

У проходных резцов обычно угол φ1 = 10...15°. С уменьшением угла γ1 до 0 величина h также уменьшается до 0, что позволяет значительно увеличить подачу, а следовательно, и производительность процесса резания.

Вспомогательный задний угол α1, измеряемый в сечении N1 – N1, перпендикулярном к вспомогательной режущей кромке, принимается примерно равным α; α1 образует зазор между вспомогательной задней поверхностью и обработанной поверхностью заготовки.

Вспомогательный передний угол γ1 определяется заточкой передней поверхности и на чертеже обычно не указывается.

С целью повышения прочности режущей части резца предусматривается также радиус скругления его вершины в плане: r = 0,1...3,0 мм. При этом большее значение радиуса применяется при обработке жестких заготовок, так как с увеличением этого радиуса возрастает радиальная составляющая силы резания.

 

Особенности конструкции различных типов резцов

Кроме проходных токарных резцов широкое распространение получили зхжодр-езные, расточные и отрезные резцы.

Подрезные резцы (рис. 3, а, б) изготавливают с отогнутой и прямой державками. Хотя отогнутая державка усложняет изготовление резцов, она обеспечивает следующие преимущества: 1) универсальность, так как проходные резцы могут работать напроход  и на подрезание ; 2) возможность вести обработку в менее доступных местах.

Расточные резцы (рис. 3, в, г) используют для обработки внутренних сквозных и глухих отверстий, а также внутренних канавок. Из-за большого вылета державки, уменьшенной площади ее сечения и затрудненного отвода стружки расточные резцы работают в более тяжелых условиях, чем проходные резцы. Державки расточных резцов выполняют круглыми, а в месте крепления они имеют утолщение квадратного сечения. Диаметр державки зависит от диаметра обрабатываемого отверстия и равен dд = (0,5...0,8) dо, где do – диаметр обрабатываемого отверстия.

Расточные резцы имеют малую виброустойчивость и жесткость. Чтобы исключить врезание задней поверхности47

 

/////////////////// резца в поверхность резания, лезвие резца располагают несколько ниже оси отверстия, а заднюю поверхность выполняют криволинейной формы.

Отрезные резцы (рис. 3, д) применяют для отрезки заготовок из прутка и проточки наружных канавок в заготовках на токарных, токарно-револьверных станках, станках-автоматах и пр.

Рис. 3. Типы резцов: а – подрезной (проходной отогнутый правый); б – подрезной (проходной упорный правый); в – расточной для сквозных отверстий; г – расточной канавочный; д – отрезной; е – строгальный; ж – долбежный.

Информация о работе Особенности работы режущих инструментов и их конструкции