Химико-термическая обработка стали

Автор работы: Пользователь скрыл имя, 18 Сентября 2013 в 08:14, реферат

Краткое описание

Цементация - наиболее распространенный в машиностроении способ химико-термической обработки стальных деталей - применяется для получения высокой поверхностной твердости, износостойкостью и усталостной прочности деталей. Эти свойства достигаются обогащением поверхностного слоя низкоуглеродистой и нелегированной стали углеродом до концентрации эвтектоидной или заэвтектоидной и последующей термической обработкой, сообщающей поверхностному слою структуру мартенсита с тем или иным остаточным количеством остаточного аустенита и карбидов.

Прикрепленные файлы: 1 файл

khto.doc

— 62.50 Кб (Скачать документ)

Реферат на тему "Химико-термическая  обработка стали"

Студента группы МС-12-98 Карпова С. Н.  Страница из 10.


ЦЕМЕНТАЦИЯ.

Цементация - наиболее распространенный в машиностроении способ химико-термической  обработки стальных деталей - применяется  для получения высокой поверхностной  твердости, износостойкостью и усталостной  прочности деталей. Эти свойства достигаются обогащением поверхностного слоя низкоуглеродистой и нелегированной стали углеродом до концентрации эвтектоидной или заэвтектоидной и последующей термической обработкой, сообщающей поверхностному слою структуру мартенсита с тем или иным остаточным количеством остаточного аустенита и карбидов.

Глубина цементированного слоя обычно находится в пределах 0,5 - 2,0 мм (иногда для мелких деталей  в пределах 0,1 - 0,3 мм, а для крупных - более 2,0 мм). Цементацию стальных деталей  осуществляют в твердых, газовых  и жидких карбюризаторах. За последние годы все большее развитие получает газовая цементация.

Диффузия углерода в сталь.

По количественной характеристике диффузии углерода в железо накоплены  многочисленные данные.

Коэффициент диффузии углерода в a-железо более чем на порядок выше, чем в g-железо, имеющее значительно более плотно упакованную решетку.

Диффузия углерода в  феррите обуславливает возможность  протекание таких низкотемпературных процессов, как коагуляция и сфероидизация  карбидов в отожженной стали, карбидообразование при отпуске закаленной стали, графитизация и т. д. Однако, цементация при температурах существования a-железа не производится ввиду ничтожной растворимости в этой фазе углерода. Цементация проводится при температурах 920-950 oС и выше, при которых сталь находится в аустенитном состоянии.

Концентрационная зависимость  коэффициента диффузии углерода в аустените  выражается уравнением:

Dc=(0,07 + 0,06C%)e -32000/RT

Или по другим данным:

Dc=(0,04 + 0,08C%)e -31350/RT.

Из приведенных зависимостей следует, что коэффициент диффузии углерода в аустените увеличивается с увеличением содержания углерода в стали. Это, очевидно, связано с увеличением искажения кристаллической решетки аустенита и термодинамической активностью углерода.

Легирующие элементы оказывают существенное влияние на диффузию углерода в аустените, что связано с искажением кристаллической решетки, изменением энергии межатомной связи в твердом растворе и термодинамической активности углерода.

Результаты изучения влияния легирующих элементов на коэффициент диффузии углерода в аустените при 1100о С приведены на рисунке 1. При других температурах влияние некоторых элементов на коэффициент диффузии углерода в аустените изменяется. карбидообразующие элементы обычно замедляют, а некарбидообразующие ускоряют диффузию углерода. Однако, следует заметить, что это обобщение требует существенного уточнения. Так, например, кремний увеличивает коэффициент диффузии углерода в аустените при низких температурах (ниже 950о С), что согласуется с представлением о кремнии как о некарбидообразующем элементе, искажающем кристаллическую решетку аустенита и вследствие этого ускоряющем диффузию.

Сталь для цементации.

Цементированные детали после соответствующей термической  обработки должны иметь твердый, прочный поверхностный слой, стойкий против износа и продавливания, и достаточно прочную и вязкую сердцевину. В связи с последним требованием для цементации применяют низкоуглеродистую сталь, содержащую 0,08 - 0,25 %С.

В последние годы для  высоконагруженных зубчатых колес и других ответственных, в том числе крупных, деталей начали использовать цементуемую сталь с более высоким (0,25 - 0,35%) содержанием углерода. Поэтому оказалось возможным уменьшить глубину цементованного слоя, не опасаясь его продавливания при больших нагрузках, предотвратить преждевременное разрушение поверхностного слоя из-за пластической деформации слоев металла, лежащих непосредственно под этим слоем, а также закаливать сердцевину с более низкой температуры без перегрева цементованного слоя.

Положительное влияние повышения содержания углерода в цементованной стали отмечалось и в ряде последующих работ. Показано, что увеличение содержания в некоторых сталях углерода повышает предел их выносливости лишь в случае одновременного некоторого снижения глубины цементованного слоя.

Для цементации широко используют низкоуглеродистую качественную сталь (08, 10, 15 и 20) и автоматную сталь (А12, А15, А15Г, А20), а для неответственных  деталей низкоуглеродистую сталь  обыкновенного или повышенного  качества (Ст.2, Ст.3, Ст.4, Ст.5, М12, М16, Б09, Б16 и др.). ответственные изделия изготавливают из легированной стали.

Основное назначение легирующих элементов в цементуемой  стали - повышение ее прокаливаемости  и механических свойств сердцевины. Большинства легирующих элементов понижает склонность зерна стали к росту при нагреве, а некоторые из них улучшают механические свойства цементованного слоя.

Цементация в разных средах.

 

  • Цементация в твердом карбюризаторе.
  • Цементация в твердом карбюризаторе с нагревом током высокой частоты (далее т. в. ч.).
  • Цементация в пастах.
  • Цементация в пастах с нагревом т. в. ч.
  • Газовая цементация.
  • Высокотемпературная газовая цементация стали в печах.
  • Цементация с нагревом т. в. ч.
  • Ионная цементация.
  • Газовая цементация кислородно-ацетиленовым пламенем.
  • Цементация в жидкой среде.
  • Цементация в расплавленном чугуне.

 

Как видно из приведенного списка видов цементации, их существует довольно много. Остановимся подробнее  на газовой цементации, так как  она используется довольно часто.

Газовая цементация.

Возможность цементации стали в газовой среде была показана еще в работе П. П. Аносова, выполненной в 1837 году. Однако только почти через сто лет (в 1935 г.) этот процесс начали впервые внедрять в производство в высокопроизводительных муфельных печах непрерывного действия на автозаводе им. Лихачева. При этом в качестве газового карбюризатора была использована среда, получаемая при пиролизе и крекинге керосина.

Для газовой цементации пока еще  часто применяют шахтные муфельные  печи и печи непрерывного действия с длинными горизонтальными муфелями из окалиностойкого сплава. Изредка применяют также печи с вращающимися ретортами. В последние годы начали получать все большее распространение безмуфельные печи непрерывного действия, нагреваемые излучающими трубками из стали Х23Н18 или Х18Н25С2.

Детали загружают в печи в  поддонах (в корзинах) или в различных  приспособлениях, на которых они  располагаются на расстоянии 5 - 10 мм между цементуемыми поверхностями; мелкие детали загружают навалом  на этажерки, помещаемые в корзины.

Для газовой цементации используют различные карбюризаторы - газы: природный (92 - 97% СН4); природный разбавленный для городских нужд (60 - 90% СН4); светильный (20 - 35% СН4, 5 - 25% СО): нефтяной (50 - 60% СН4): коксовый (20 - 25% СН4, 4 - 10% СО); сжиженные: пропан, бутан, пропано-бутановая смесь.

Сложные углеводороды, которые входят в состав карбюризаторов или образуются при из разложении в результате ряда промежуточных реакций, распадаются  в основном до метана. При крекинге углеводородов, который производится для снижения их активности или получения эндогаза, образуется также СО. Таким образом, химизм выделения атомарного углерода при газовой цементации сводится  к распаду метана и окиси углерода.

СН4 = С + 2Н2.

2СО = СО2 + С.

Метан является более активным карбюризатором чем окись. Для науглероживания железа при 900-1000 0С в смеси СН4;-Н2 достаточно наличия всего лишь нескольких процентов метана, тогда как для цементации в смеси СО-СО2 необходима концентрация около 95-97% СО.

Свойства цементованной стали.

Оптимальное содержание углерода в поверхностной зоне цементованного слоя большинства сталей 0,8-0,9%C, при таком его количестве сталь обладает высокой износостойкостью. Дальнейшее увеличение содержание углерода уменьшает пределы выносливости и прочности стали при статических и динамических испытаниях. Однако наиболее износостоек цементованный слой при несколько повышенном содержании в нем углерода (по некоторым данным до 1,2% С). при этом после термической обработки цементованный слой должен иметь структуру мелкоигольчатого или скрытокристаллического мартенсита с мелкими глобулями карбидов и небольшим количеством остаточного аустенита.

Цементация повышает предел выносливости стали. Объясняется это, возникновением в слое остаточных сжимающих напряжений в связи с неодинаковым изменением объема слоя и сердцевины стали в процессе цементации и закалки. Наибольшее повышение предела выносливости достигается при цементации на сравнительно небольшую глубину, когда цементованный слой приобретает после закалки мартенситную структуру с минимальным количеством остаточного аустенита, в результате чего в слое  возникают максимальные сжимающие напряжения.

Азотирование.

Азотированием (азотизацией  или нитрированием) стали называется процесс поверхностного насыщения стали азотом.

Азотированию, как и  цементации, подвергают детали, работающие на износ и воспринимающие знакопеременные  нагрузки. Азотированные детали имеют  следующие преимущества: высокую  твердость, износостойкость, теплостойкость и коррозийную стойкость. Так как азотированию подвергают в основном легированные стали определенных составов и процесс имеет большую продолжительность (30-60 ч.), применение его оказывается экономически целесообразным лишь для обработки ответственных инструментов и деталей авиамоторов, дизелей, турбин, приборов и т. п.

Насыщаемость железа молекулярным азотом при атмосферном  давлении и температуре до 1500 0С невелика, однако ее можно увеличить, создав в печи высокое давление (несколько сот атмосфер). Но этот способ насыщения железа азотом пока не представляет практического интереса ввиду его трудоемкости.

Для насыщения целесообразнее использовать атомарный азот, образующийся в момент разложения соединений, содержащих этот элемент. В качестве такого соединения обычно применяют аммиак, диссоциация которого сопровождается выделением азота в атомарном активном состоянии, который, однако, вскоре переходит в молекулярное состояние и теряет свою активность:

2NH3 = 2N + 6H

2N       N2


6H       3H2.


Поэтому азотирование интенсивно протекает лишь в том случае, когда  диссоциация аммиака происходит в непосредственной близости  от азотируемой поверхности.

Стали для азотирования.

Все шире применяется  азотирование аустенитных и нержавеющих теплостойких сталей.

Аустенитная сталь, как  известно, имеет низкую износостойкость, но в то же время обладает рядом  ценных свойств: парамагнитностью, высокой  жаропрочностью, окалиностойкостью, коррозийной  стойкостью и высокой ударной  вязкостью при температуре ниже 0 0С.

Азотирование - наиболее эффективный способ повышения износостойкости  аустенитных нержавеющих сталей.

В ряде зарубежных работ  освещены результаты исследований сталей, содержащих титан. Эти стали азотируются  быстрее, чем хромомолибденоаллюминиевая, и отличаются более высокой поверхностной твердостью и красностойкостью.

Разработана сталь, содержащая 18% Ni, насыщение азотом при 425-455 0С в течение 20 ч приводит к превращению в поверхностном слое феррита в аустенит, а последний, при охлаждении на воздухе превращается в мартенсит.

Рекомендовано подвергать азотированию (взамен цианирования) инструмент из быстрорежущих сталей Р9 и Р18.

Азотированию подвергают также детали из высокопрочного магниевого чугуна (в частности, коленчатые валы тепловоза и детали из специальных чугунов, легированных алюминием).

Свойства азотированной  легированной стали.

Азотированный слой обладает высокой твердостью и износостойкостью. Износостойкость азотированной  стали в 1,5-4 раза выше износостойкости  закаленных высокоуглеродистых, цементованных, а также цианированных и нитроцементованных сталей.

Азотирование снижает  вязкость стали, повышает ее прочность, ослабляет влияние концентраторов напряжений на снижение предела выносливости стали и существенно повышает предел выносливости, особенно тонких деталей и деталей, работающих в некоторых коррозионных средах.

Азотирование повышает сопротивление задираемости и налипанию  металла под нагрузкой и особенно при повышенных температурах.

Азотированная сталь  обладает теплостойкостью (красностойкостью), и ее твердость сохраняется после воздействия высоких температур. Например, сталь 38ХМЮА сохраняет свою твердость при нагреве до 500-520 0С в течение нескольких десятков часов. Еще большую устойчивость твердости против воздействия температур (до 600 0С) имеет аустенитная сталь. Однако при длительной эксплуатации в условиях высоких температур азотированный слой постепенно рассасывается, на поверхности образуются окислы и происходит глубокая диффузия кислорода по нитридным прожилкам, образующимся как в процессе азотирования, так и при длительном нагреве во время эксплуатации.

В результате азотирования коррозионная стойкость конструкционной  стали (в среде воздуха, водопроводной  воде, перегретом паре, слабых щелочных растворах) повышается и, наоборот, аустенитной хромоникелевой и нержавеющей хромистой стали некоторых марок понижается. Окалиностойкость последних сталей также понижается. Это объясняется тем, что в азотированном слое этих сталей из твердого раствора устраняется значительная часть хрома, входящего в состав образующихся нитридов. В аустенитной стали некоторых составов, например с малым содержанием никеля, это может сопровождаться даже выпадением в азотированном слое a-фазы, в результате чего поверхностный слой становится слегка магнитным.

Информация о работе Химико-термическая обработка стали