Алюминий и его сплавы

Автор работы: Пользователь скрыл имя, 25 Декабря 2013 в 03:37, реферат

Краткое описание

Алюминий - серебристо-белый металл, обладающий высокой электропроводностью и теплопроводностью. Он имеет низкую плотность – приблизительно втрое меньшую, чем у железа, меди и цинка. Поэтому удельная прочность данного металла высока. Масштабы применение алюминия и, в особенности, его сплавов весьма широки. Последние занимают сейчас второе место после железосодержащих сплавов. Поэтому основная часть выплавляемого алюминия расходуется именно на получение различных сплавов, которые обладают самыми разнообразными свойствами.

Содержание

Введение...............................................................................................................
Алюминий и алюминиевые сплавы…………………………………………….
Классификация алюминиевых сплавов………………………………………..
Обработка алюминия…………………………………………………………
Сплавы из алюминия и их применение……………………………………….
Алюминиевые сплавы………………………………………………………….
Дюралюминии — сплавы алюминия с медью………………………………….
Сплавы алюминия с марганцем и магнием…………………………………….
Другие легирующие элементы…………………………………………………
Основные природные соединения алюминия....................................................
Химические свойства…………………………………………………………..
Применение алюминиевых сплавов……………………………………………….
Применение алюминия………………………………………………………
Заключение………………………………………………………………………
Список литературы……………………………………

Прикрепленные файлы: 1 файл

1 (1).doc

— 447.00 Кб (Скачать документ)

а) Закаленные и искусственно состаренные: Д16Т, Д16Н, АВТ.

б) Ковочные: АК6, АК8, АК4-1.

в) Литейные: АЛ2, АЛ4, АЛ9, АЛ8, АЛ27, АЛ1, АЛ21, АЛ33.

Сплавы из алюминия и их применение

Алюминий применяют  для производства из него изделий  и сплавов на его основе.

Легирование — процесс введения в расплав дополнительных элементов, улучшающих механические, физические и химические свойства основного материала. Легирование является обобщающим понятием ряда технологических процедур, проводимых на различных этапах получения металлического материала с целями повышения качества металлургической продукции.

Введение различных  легирующих элементов в алюминий существенно изменяет его свойства, а иногда придает ему новые специфические свойства.

Прочность чистого алюминия не удовлетворяет современные промышленные нужды, поэтому для изготовления любых изделий, предназначенных  для промышленности, применяют не чистый алюминий, а его сплавы.

При различном легировании повышаются прочность, твердость, приобретается жаропрочность и другие свойства. При этом происходят и нежелательные изменения: неизбежно снижается электропроводность, во многих случаях ухудшается коррозионная стойкость, почти всегда повышается относительная плотность. Исключение составляет легирование марганцем, который не только не снижает коррозионную стойкость, но даже несколько повышает ее, и магнием, который тоже повышает коррозионную стойкость (если его не более 3 %) и снижает относительную плотность, так как он легче, чем алюминий.

Алюминиевые сплавы

Алюминиевые сплавы по способу изготовления из них изделий делят на две группы:

1) деформируемые (имеют  высокую пластичность в нагретом  состоянии),

2) литейные (имеют  хорошую жидкотекучесть).

Такое деление  отражает основные технологические  свойства сплавов. Для получения  этих свойств в алюминий вводят разные легирующие элементы и в неодинаковом количестве.

Сырьем для  получения сплавов обоего типа являются не только технически чистый алюминий, но также и двойные сплавы алюминия с кремнием, которые содержат 10-13 % Si, и немного отличаются друг от друга количеством примесей железа, кальция, титана и марганца. Общее содержание примесей в них 0.5-1.7 %. Эти сплавы называют силуминами. Для получения деформируемых сплавов в алюминий вводят в основном растворимые в нем легирующие элементы в количестве, не превышающем предел их растворимости при высокой температуре. Деформируемые сплавы при нагреве под обработку давлением должны иметь гомогенную структуру твердого раствора, обеспечивающую наибольшую пластичность и наименьшую прочность. Это и обусловливает их хорошую обрабатываемость давлением.

Основными легирующими  элементами в различных деформируемых  сплавах является медь, магний, марганец и цинк, кроме того, в сравнительно небольших количествах вводят также кремний, железо, никель и некоторые другие элементы.

 

Дюралюминии —  сплавы алюминия с медью

Характерными  упрочняемыми сплавами являются дюралюминии  — сплавы алюминия с медью, которые содержат постоянные примеси кремния и железа и могут быть легированы магнием и марганцем. Количество меди в них находится в пределах 2.2-7 %.

Медь растворяется в алюминии в количестве 0,5% при  комнатной температуре и 5,7% при  эвтектической температуре, равной 548 C.

Термическая обработка дюралюминия состоит  из двух этапов. Сначала его нагревают  выше линии предельной растворимости (обычно приблизительно до 500 C). При  этой температуре его структура  представляет собой гомогенный твердый раствор меди в алюминии. Путем закалки, т.е. быстрого охлаждения в воде, эту структуру фиксируют при комнатной температуре. При этом раствор получается пересыщенным. В этом состоянии, т.е. в состоянии закалки, дюралюминий очень мягок и пластичен.

Структура закаленного дюралюминия имеет малую стабильность и даже при комнатной температуре в ней самопроизвольно происходят изменения. Эти изменения сводятся к тому, что атомы избыточной меди группируются в растворе, располагаясь в порядке, близком к характерному для кристаллов химического соединения CuAl. Химическое соединение еще не образуется и тем более не отделяется от твердого раствора, но за счет неравномерности распределения атомов в кристаллической решетке твердого раствора в ней возникают искажения, которые приводят к значительному повышению твердости и прочности с одновременным снижением пластичности сплава. Процесс изменения структуры закаленного сплава при комнатной температуре носит название естественного старения.

Естественное  старение особенно интенсивно происходит в течение первых нескольких часов, полностью же завершается, придавая сплаву максимальную для него прочность, через 4-6 суток. Если же сплав подогреть до 100-150 C, то произойдет искусственное старение. В этом случае процесс совершается быстро, но упрочнение происходит меньшее. Объясняется это тем, что при более высокой температуре диффузионные перемещения атомов меди осуществляются более легко, поэтому происходит завершенное образование фазы CuAl и выделение ее из твердого раствора. Упрочняющее же действие полученной фазы оказывается меньшим, чем действие искаженности решетки твердого раствора, возникающей при естественном старении.

Сравнение результатов  старения дюралюминия при различной  температуре показывает, что максимальное упрочнение обеспечивается при естественном старении в течении четырех дней.

Сплавы алюминия с марганцем и магнием

Среди неупрочняемых  алюминиевых сплавов наибольшее значение приобрели сплавы на основе Al-Mn и Al-Mg.

Марганец и  магний, так же как и медь, имеют  ограниченную растворимость в алюминии, уменьшающуюся при снижении температуры. Однако эффект упрочнения при их термообработке невелик. Объясняется это следующим образом. В процессе кристаллизации при изготовлении сплавов, содержащих до 1,9% Mn, выделяющийся из твердого раствора избыточный марганец должен был бы образовать с алюминием растворимое в нем химическое соединение Al (MnFe), которое в алюминии не растворяется. Следовательно, последующий нагрев выше линии предельной растворимости не обеспечивает образование гомогенного твердого раствора, сплав остается гетерогенным, состоящим из твердого раствора и частиц Al (MnFe), а это приводит к невозможности закалки и последущего старения.

В случае системы Al-Mg причина отсутствия упрочнения при термической обработке иная. При содержании магния до 1,4% упрочнения быть не может, так как в этих пределах он растворяется в алюминии при комнатной температуре и никакого выделения избыточных фаз не происходит. При большем же содержании магния закалка с последующим химическим старением приводит к выделению избыточной фазы — химического соединения Mg Al .

Однако свойства этого соединения таковы, что процессы, предшествующие его выделению, а  затем и образующиеся включения  не вызывают заметногоэффекта упрочнения. Несмотря на это, введение и марганца, и магния в алюминий полезно. Они повышают его прочность и коррозионную стойкость (при содержании магния не более 3%). Кроме того, сплавы с магнием более легкие, чем чистый алюминий.

Другие легирующие элементы

Также для  улучшения некоторых характеристик алюминия в качестве легирующих элементов используются:

Бериллий добавляется для уменьшения окисления при повышенных температурах. Небольшие добавки бериллия (0,01-0,05%) применяют в алюминиевых литейных сплавах для улучшения текучести в производстве деталей двигателей внутреннего сгорания (поршней и головок цилиндров).

Бор вводят для повышения электропроводимости и как рафинирующую добавку. Бор вводится в алюминиевые сплавы, используемые в атомной энергетике(кроме деталей реакторов), т.к. он поглощает нейтроны, препятствуя распространению радиации. Бор вводится в среднем в количестве 0,095-0,1%.

Висмут. Металлы с низкой температурой плавления, такие как висмут, свинец, олово, кадмий вводят в алюминиевые сплавы для улучшения обрабатываемости резанием. Эти элементы образуют мягкие легкоплавкие фазы, которые способствуют ломкости стружки и смазыванию резца.

Галлий добавляется в количестве 0,01 — 0,1% в сплавы, из которых далее изготавливаются расходуемые аноды.

Железо. В малых количествах (>0,04%) вводится при производстве проводов для увеличения прочности и улучшает характеристики ползучести. Так же железо уменьшает прилипание к стенкам форм при литье в кокиль.

Индий. Добавка 0,05 — 0,2% упрочняют сплавы алюминия при старении, особенно при низком содержании меди. Индиевые добавки используются в алюминиево — кадмиевых подшипниковых сплавах.

Кадмий. Примерно 0,3% кадмия вводят для повышения прочности и улучшения коррозионных свойств сплавов.

Кальций придает пластичность. При содержании кальция 5% сплав обладает эффектом сверхпластичности.

Кремний является наиболее используемой добавкой в литейных сплавах. В количестве 0,5-4% уменьшает склонность к трещинообразованию. Сочетание кремния с магнием делают возможным термоуплотнение сплава.

Олово улучшает обработку резанием.

Титан. Основная задача титана в сплавах — измельчение зерна в отливках и слитках, что очень повышает прочность и равномерность свойств во всем объеме.

Основные природные  соединения алюминия:

1. Нефелины  — (Na,K)2О • АlО3 • 2Si2.

2. Криолит  — А1F3 • 3NaF

3. Бокситы  — алюминиевая руда Аl2O3 • хH2O (встречается, как правило, с  примесями оксидов кремния SiO2, железа Fe2О3, карбонатом кальция СаСО3).

4. Каолин —  А12О3 • 2SiO2 • 2Н2О.

5. Глиноземы  — смесь каолинов с песком SiO2, известняком СаСО3, магнезитом МgСО3.

 

Химические  свойства:

Алюминий обладает высокой химической активностью (в  ряду напряжений металлов занимает место  между магнием и цинком).

Алюминий легко  окисляется кислородом воздуха, покрываясь прочной защитной пленкой оксида алюминия Аl2О3, которая препятствует дальнейшему окислению и взаимодействию с другими веществами, что обуславливает его высокую коррозионную стойкость.

4Аl + 3О2 = 2Аl2О3

Если пленку оксида алюминия разрушить, то алюминий активно взаимодействует с водой при обычной температуре:

2Аl + 6Н2О = 2Аl(ОН)3 + ЗН2

1. Лишенный  окисной пленки алюминий легко  растворяется в:

— щелочах  с образованием алюминатов

2Аl + 2NаОН + 2Н2О = 2NаАlО2 + 3Н2

— разбавленных кислотах с выделением водорода

2А1 + 6НС1 = 2АlСl3 + ЗН2

2А1 + ЗН2SО4 = Аl2(S04)3 + 3Н2

— сильно разбавленная и концентрированная азотная  кислота пассивирует алюминий, поэтому  для хранения и перевозки азотной  кислоты используются алю¬миниевые емкости. Но при нагревании алюминий растворяется в азотной кислоте:

Аl + 6НNO3(конц.) = Аl(NО3)3 + ЗNО2 + ЗН2О

2. Алюминий  взаимодействует с:

— галогенами

2Аl + ЗВr2 = 2АlВr3

— при высоких  температурах с другими неметаллами (серой, азотом, углеродом)

2Аl + 3S = Аl2S3 (сульфид  алюминия)

2Аl + N2 = 2АlN (нитрид  алюминия)

4Аl + 3С = А14С3 (карбид алюминия)

Реакции протекают  с выделением большого количества

тепла. 3. Для  алюминия характерны реакции алюминотермии  —

восстановления  металлов из их оксидов алюминием.

Алюминотермия используется для получения редких металлов, образующих прочную связь с кислородом: нио¬бия Nb, тантала Та, молибдена Мо, вольфрама W и др.

2Аl + 3W3 = 3W + А12О3

Смесь мелкого  порошка Аl и магнитного железняка Fе3O4 называется термитом, при поджоге  которого выделяется большое количество тепла, и температура смеси повышается до 3500°С. Этот процесс используется при термитной сварке.

8Аl + ЗFе3О4 = 9Fе  + 4Аl2О3

Применение  алюминиевых сплавов

Большинство алюминиевых сплавов имеют высокую  коррозионную стойкость в естественной атмосфере, морской воде, растворах  многих солей и химикатов и в большинстве пищевых продуктов. Последнее свойство в сочетании с тем, что алюминий не разрушает витамины, позволяет широко использовать его в производстве посуды. Конструкции из алюминиевых сплавов часто используют в морской воде. Алюминий в большом объеме используется в строительстве в виде облицовочных панелей, дверей, оконных рам, электрических кабелей. Алюминиевые сплавы не подвержены сильной коррозии в течение длительного времени при контакте с бетоном, строительным раствором, штукатуркой, особенно если конструкции не подвергаются частому намоканию. Алюминий также широко применяется в машиностроении, т.к. обладает хорошими физическими качествами.

Но главная  отрасль, в настоящее время просто не мыслимая без использования алюминия — это, конечно, авиация. Именно в авиации наиболее полно нашли применение всем важным характеристикам алюминия

 

Применение алюминия

Алюминий широко применяется как конструкционный  материал. Основные достоинства алюминия в этом качестве — легкость, податливость штамповке, коррозионная стойкость (на воздухе алюминий мгновенно покрывается прочной пленкой Al2O3, которая препятствует его дальнейшему окислению), высокая теплопроводность, неядовитость его соединений. В частности, эти свойства сделали алюминий чрезвычайно популярным при производстве кухонной посуды, алюминиевой фольги в пищевой промышленности и для упаковки.

Информация о работе Алюминий и его сплавы