Архитектура Операционной системы

Автор работы: Пользователь скрыл имя, 23 Октября 2014 в 20:06, курсовая работа

Краткое описание

Компьютерный мир за последние десятилетия достиг ошеломляющих результатов. Не одна отрасль не достигла таких результатов в техническом прогрессе, как компьютерная. Изменения, которые за 15 лет привели к появлению такого компьютерного продукта, как Windows, поистине впечатляют.

Содержание

• Введение ……………………………………………………2
• Глава 1. Понятие операционной системы………………4
• 1.1. Функции операционной системы……………………6
• 1.2. Требования предъявляемые к ОС………………….11
• 1.3. Виды современных ОС……………………………..12
• Глава 2 Основные концепции ОС. Назначение ОС…..18.
• 2.1. ОС как виртуальная машина………………………18
• 2.2. ОС как менеджер ресурсов…………………………19
• Глава 3. Архитектура Операционной системы……….20
• 3.1.Структурирование ОС………………………………21
• 3.2. Пост UNIX архитектуры……………………………22
• Заключение……………………………………………….24
• Список литературы………………………………………

Прикрепленные файлы: 1 файл

Курсовая новая по ОС готовая.doc

— 197.00 Кб (Скачать документ)

Кроме реализации всех объектов системы в виде файлов и размещения их на едином и персональном для каждого терминала вычислительной сети пространстве (namespace), были пересмотрены другие архитектурные решения UNIX. Например, в Plan 9 отсутствует понятие «суперпользователь», и, соответственно, исключаются любые нарушения режима безопасности, связанные с нелегальным получением прав суперпользователя в системе. Для представления (хранения, обмена) информации Роб Пайк и Кен Томпсон разработали универсальную кодировку UTF-8, на сегодняшний день ставшую стандартом де-факто. Для доступа к файлам используется единый универсальный протокол 9P, по сети работающий поверх сетевого протокола (TCP или UDP). Таким образом, для прикладного ПО сети не существует - доступ к локальным и к удалённым файлам единообразен. 9P - байт-ориентированный протокол, в отличие от других подобных протоколов, являющихся блок-ориентированными. Это также результат работы концепции: доступ побайтно - к унифицированным файлам, а не побочно - к разнообразным и сильно изменяющимися с развитием технологий устройствам. Для контроля доступа к объектам не требуется иных решений, кроме уже существующего в операционной системе контроля доступа к файлам. Новая концепция системы хранения избавила администратора системы от изнурительного труда по сопровождению архивов и предвосхитила современные системы управления версиями файлов.

Операционные системы, созданные на базе или идеях UNIX, такие как всё семейство BSD и системы GNU/Linux, постепенно перенимают новые идеи из Bell Labs. Возможно, эти новые идеи ждёт большое будущее и признание ИТ-разработчиков.

 

 

 

 

 

 

 

 

 

 

 

Заключение

Основными функциями операционных систем являются функции управления процессами и ресурсами вычислительных машин и систем. Процессы и ресурсы -это ключевые понятия операционных систем. За время своего существования процессы могут неоднократно изменять свое состояние, проходя через стадии создания, готовности, выполнения, ожидания и завершения своей работы. Операционная система организует планирование выполнения процессов, обеспечивает процессы необходимыми системными ресурсами, поддерживает взаимодействие процессов и решает проблемы их синхронизации.

При управлении таким важнейшим ресурсом, как память вычислительной машины, операционная система контролирует наличие свободной и занятой памяти, выделяет память для выполнения процессов и освобождает память после завершении процессов, реализует вытеснение процессов из оперативной памяти на дисковую память и возвращение их обратно в оперативную память, обеспечивает настройку адресов программы на конкретную область физической памяти.

Управляя устройствами ввода-вывода, операционная система передает устройствам соответствующие команды, перехватывает прерывания, обрабатывает ошибки, обеспечивает интерфейс между устройствами ввода-вывода и остальной частью машины. Для освобождения процессора от операций последовательного вывода данных из оперативной памяти или последовательного ввода в нее используется механизм прямого доступа внешних устройств к памяти.

Возможность управления файлами со стороны операционной системы на логическом уровне структур данных и операций обеспечивают различные типы файловых систем. Файловая система представляет собой набор спецификаций и соответствующее им программное обеспечение, которые отвечают за создание, уничтожение, организацию, чтение, запись, модификацию и перемещение файловой информации, а также за управление доступом к файлам и за управление ресурсами, которые используются файлами.

В операционных системах для многопроцессорных вычислительных машин сложность планирования процессов существенно возрастает, так как требуется не только решение вопросов очередности запуска процессов на выполнение, но и выбор центрального процессора, на котором должен быть запущен тот или иной процесс.

В многомашинных вычислительных системах механизмы организации межпроцессной взаимосвязи принципиально отличаются от организации такой взаимосвязи в автономных вычислительных машинах. Базой для взаимодействия процессов в автономных машинах служит общая разделяемая память. Многомашинные вычислительные системы по определению не имеют общей разделяемой памяти, и поэтому основой межпроцессной взаимосвязи в них служит обмен физическими сообщениями посредством коммуникационной среды.

Операционные системы многомашинных вычислительных систем распределенного типа - вычислительных сетей - обычно называют сетевыми. Фундаментальным понятием сетевых операционных систем, позволяющим определить и реализовать взаимодействие удаленных процессов, является понятие сетевого протокола.

Наиболее совершенным и перспективным классом операционных систем являются так называемые распределенные операционные системы. Распределенная система создает для пользователя полную иллюзию того, что он работает в обычной автономной системе. Эффективным способом построения распределенных операционных систем является установка специального промежуточного уровня программного обеспечения поверх сетевой операционной системы, который предоставляет приложениям определенную однородность взаимодействия. Среди различных типов промежуточного программного обеспечения следует выделить документное, файловое, объектное и координационное.

Основными принципами построения современных операционных систем являются принципы модульности, генерируемости, функциональной избыточности, виртуализации, совместимости с другими системами, открытости, легкой наращиваемости, мобильности, обеспечения надежной безопасности. Операционные системы прошли длительный путь развития и совершенствования своей архитектуры от монолитных систем до хорошо структурированных модульных систем, способных к развитию, расширению и легкому переносу на новые платформы. При модульном построении в системе выделяется некоторая часть важных программных модулей, которые для более эффективной организации вычислительного процесса должны постоянно находиться в оперативной памяти. Эту группу модулей называют ядром операционной системы. Другие системные программные модули (транзитные или диск-резидентные) загружаются в оперативную память только при необходимости, а в случае отсутствия свободного пространства могут быть замещены другими транзитными модулями. Для использования прикладными программами системных ресурсов операционной системы и реализуемых ею функций предназначен интерфейс прикладного программирования, который может быть реализован как на уровне операционной системы, так и на уровне системы программирования или на уровне внешней библиотеки процедур и функций.

Прообразом современных операционных систем являются разработанные в середине 1950-х годов системы пакетной обработки, которые были первыми системными программами, предназначенными для управления вычислительным процессом. Следующим этапом эволюции операционных систем стала разработка в 1960-х годах универсальных систем, которые были способны работать на разных типах вычислительных машин, имеющих различный набор периферийных устройств и используемых в разных областях человеческой деятельности. Существенным достижением систем этого периода явилась реализация многозадачного режима и спулинга.

Важнейшей вехой в истории и современном состоянии операциионных систем является семейство многопользовательских многозадачных систем UNIX. UNIX получила несколько ветвей развития исходной архитектуры. Двумя главными из таких ветвей стали System V (корпорации AT&T) и BSD (Калифорнийского университета в Беркли). Впоследствии на основе обеих этих ветвей был создан ряд новых версий ОС UNIX. Третья самостоятельная ветвь развития UNIX начиналась с относительно простой “учебной” системы MINIX, за которой в 1991 году последовала значительно более мощная многозадачная многопользовательская ОС LINUX. Операционные системы типа UNIX широко используется на вычислительных машинах различных классов от ноутбуков до суперкомпьютеров.

Для персональных компьютеров клона IBM PC были разработаны однопользовательские однозадачные операционные системы типа MS-DOS корпорации Microsoft и их аналоги других корпораций. Управление компьютером в среде MS-DOS осуществлялось в режиме командной строки. Для того, чтобы сделать общение с компьютером более простым, были предложены так называемые программы-оболочки, представляющие собой программные надстройки операционной системы, позволяющие пользователю осуществлять действия по управлению ресурсами компьютера в рамках более развитого и удобного, чем командная строка, псевдографического интерфейса.

Следует отметить также некоторые специализированные системы, например, предназначенные исключительно для выполнения коммуникационных задач или ориентированные на определенную аппаратную платформу компьютеров.

Любая из современных операционных систем имеет свои особенности построения и практической реализации, применяет те или иные способы и механизмы управления процессами и ресурсами, использует различные по степени универсальности и совместимости прикладные интерфейсы, обладает разным уровнем функциональности и может позиционироваться для определенных сфер применения. Для каждой из систем можно указать ее преимущества и недостатки, сильные и слабые стороны. Естественно, что предприятию или отдельному пользователю хотелось бы работать с оптимальной операционной системой, удовлетворяющей комплексу наиболее важных требований. “Идеальная” операционная система скорее всего должна иметь такую же степень интеграции и такую же поддержку, как Microsoft Windows .

Подобно другим программным продуктам информационных технологий, операционные системы постоянно совершенствуются. Основное внимание при разработке новых версий операционных систем уделяется базовым службам (файловые службы, службы печати, защиты, аутентификации, службы справочника), средствам управления, масштабируемости, применимости, надежности, службам Интернет, интрасетей и электронной коммерции. Та компания, которая в своей версии операционной системы лучше других обеспечивает эти качества, становится лидером продаж на рынке. Конкурентная борьба, как хорошо известно, является лучшим двигателем прогресса, в том числе и в области операционных систем.

Каждая из компаний - игроков на рынке операционных систем - имеет собственные планы дальнейшего развития своих продуктов.

Можно надеяться, что не остановятся на достигнутом и другие компании – разработчики операционных систем, поэтому пользователей ждут еще более совершенные, функциональные, производительные и комфортные среды взаимодействия с вычислительной техникой. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Список литературы:

1. Иртегов Д.В. Введение в операционные  системы. - СПб.: БХВ-Петербург, 2002.

2. Максвелл С. Ядро Linux в комментариях.- М.:Диасофт, 2000.

.

3. П. Таненбаум, Э. Современные операционные системы / Э. Таненбаум - 2-е изд. -СПб.: Питер, 2002 -1040 с.

4. Гордеев А. В. Операционные системы: Учебник для вузов. - 2-е изд. - СПб.: Питер, 2007. - 416 с

5. Иртегов Д. В. Введение в операционные системы. 2-е изд. СПб.: BHV-СПб, 2007. 

6. Олифер В. Г., Олифер Н. А. Сетевые операционные системы.  СПб.: Питер, 2002. - 544 с. - Столлингс У. Операционные системы, 2004. - 848 с. 

7. Таненбаум Э. С. Современные операционные системы 2-е изд. - СПб.: Питер, 2005. - 1038 с. 

8. Таненбаум Э. С., Вудхалл А. С. Операционные системы. Разработка и реализация  3-е изд. - СПб.: Питер, 2007.- 704 с. 

9. Шоу А. Логическое проектирование операционных систем Рэймонд Э. С. Искусство программирования для UNIX 2005. - 544 с. 

10. Отставнов М. Е. Свободное программное обеспечение в школе. Свободное ПО для школы (2003)

 

 

 

 


Информация о работе Архитектура Операционной системы